Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kostarelos, Kostas

  • Google
  • 24
  • 97
  • 5547

University of Manchester

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (24/24 displayed)

  • 2022Hazard Assessment of Abraded Thermoplastic Composites Reinforced with Reduced Graphene Oxide31citations
  • 2021Viscoelastic surface electrode arrays to interface with viscoelastic tissues246citations
  • 2020Production and processing of graphene and related materialscitations
  • 2020Production and processing of graphene and related materials421citations
  • 2020Production and processing of graphene and related materials421citations
  • 2020Production and processing of graphene and related materials421citations
  • 2020Production and processing of graphene and related materials421citations
  • 2020Production and processing of graphene and related materials421citations
  • 2020Production and processing of graphene and related materials421citations
  • 2020Production and processing of graphene and related materials421citations
  • 2020Production and processing of graphene and related materialscitations
  • 2020Production and processing of graphene and related materials421citations
  • 2020Splenic Capture and In Vivo Intracellular Biodegradation of Biological-grade Graphene Oxide Sheets71citations
  • 2019Enhanced Intraliposomal Metallic Nanoparticle Payload Capacity Using Microfluidic-Assisted Self-Assembly19citations
  • 2018Immunological impact of graphene oxide sheets in the abdominal cavity is governed by surface reactivity28citations
  • 2015Nanocomposite hydrogels: 3D polymer-nanoparticle synergies for on-demand drug delivery730citations
  • 2015Biodegradation of carbon nanohorns in macrophage cells.55citations
  • 2015Degradation-by-design: Surface modification with functional substrates that enhance the enzymatic degradation of carbon nanotubes68citations
  • 2015Nanocomposite Hydrogels: 3D Polymer-Nanoparticle Synergies for On-Demand Drug Delivery.730citations
  • 2015Degradation-by-design: Surface modification with functional substrates that enhance the enzymatic degradation of carbon nanotubes.68citations
  • 2015Degradation-by-design: Surface modification with functional substrates that enhance the enzymatic degradation of carbon nanotubes.68citations
  • 2015Intracellular degradation of chemically functionalized carbon nanotubes using a long-term primary microglial culture model57citations
  • 2014Biodegradation of Graphene Nanocarbonscitations
  • 2010Energy loss of protons in carbon nanotubes: experiments and calculations8citations

Places of action

Chart of shared publication
Bianco, Alberto
16 / 25 shared
Bussy, Cyrill
6 / 7 shared
Prato, Maurizio
14 / 42 shared
Mooney, David
1 / 2 shared
Tringides, Christina
1 / 2 shared
Lacour, Stéphanie
1 / 1 shared
Fallegger, Florian
1 / 2 shared
Shin, Yuyoung
1 / 3 shared
Casiraghi, Cinzia
1 / 12 shared
Seo, Bo Ri
1 / 2 shared
Wang, Hua
1 / 7 shared
Vachicouras, Nicolas
1 / 1 shared
De Lázaro, Irene
1 / 1 shared
Elosegui-Artola, Alberto
1 / 1 shared
Trouillet, Alix
1 / 1 shared
Bellani, Sebastiano
10 / 24 shared
Banszerus, Luca
10 / 11 shared
Andrieux-Ledier, Amandine
9 / 12 shared
Bartali, Ruben
10 / 39 shared
Balakrishnan, Nilanthy
10 / 11 shared
Berger, Claire
10 / 19 shared
Barjon, Julien
10 / 23 shared
Backes, Claudia
10 / 18 shared
Azpeitia, Jon
9 / 10 shared
Vázquez, Ester
3 / 4 shared
Alonso, Concepción
6 / 10 shared
Berger, Reinhard
9 / 22 shared
Martín, Cristina
5 / 8 shared
Martin, Cristina
5 / 8 shared
Arenal, Raul
8 / 29 shared
Vazquez, Ester
7 / 9 shared
Abdelkader, Amr
1 / 1 shared
Assas, Mushref
1 / 1 shared
Haigh, Sj
1 / 63 shared
Nam, Yein
1 / 1 shared
Rey, Irene De Lazaro Del
1 / 1 shared
Pennock, Joanne
1 / 1 shared
Newman, Leon
3 / 4 shared
Lozano, Neus
1 / 1 shared
Jasim, Dhifaf
2 / 2 shared
Prestat, Eric
2 / 22 shared
Lawrence, M. Jayne
1 / 4 shared
Ashford, Marianne
1 / 2 shared
Gennari, Arianna
1 / 1 shared
Al-Ahmady, Zahraa S.
1 / 1 shared
Marotta, Roberto
1 / 1 shared
Mironov, Aleksandr
1 / 2 shared
Donno, Roberto
1 / 3 shared
Tirelli, Nicola
1 / 13 shared
Crica, Livia
1 / 1 shared
Vacchi, Isabella Anna
1 / 1 shared
Ménard-Moyon, Cécilia
4 / 7 shared
Rodrigues, Artur
1 / 1 shared
Merino, Sonia
2 / 2 shared
Yudasaka, Masako
1 / 2 shared
Zhang, Minfang
1 / 2 shared
Yang, Mei
1 / 2 shared
Iijima, Sumio
1 / 2 shared
Russier, Julie
3 / 5 shared
Meneghetti, Moreno
3 / 9 shared
Sureshbabu, Adukamparai Rajukrishnan
3 / 3 shared
Kurapati, Rajendra
3 / 5 shared
Bartolina, Isacco
2 / 2 shared
Bartolini, Isacco
1 / 1 shared
Hadad, Caroline
1 / 1 shared
Kyriakou, Ioanna
1 / 1 shared
Valdés, Jorge E.
1 / 4 shared
Emfietzoglou, Dimitris
1 / 1 shared
Denton Zanello, Cristian D.
1 / 5 shared
García Molina, Rafael
1 / 13 shared
Abril Sánchez, Isabel
1 / 4 shared
Segura, Rodrigo
1 / 4 shared
Vargas, Patricio
1 / 2 shared
Celedón, Carlos
1 / 3 shared
Chart of publication period
2022
2021
2020
2019
2018
2015
2014
2010

Co-Authors (by relevance)

  • Bianco, Alberto
  • Bussy, Cyrill
  • Prato, Maurizio
  • Mooney, David
  • Tringides, Christina
  • Lacour, Stéphanie
  • Fallegger, Florian
  • Shin, Yuyoung
  • Casiraghi, Cinzia
  • Seo, Bo Ri
  • Wang, Hua
  • Vachicouras, Nicolas
  • De Lázaro, Irene
  • Elosegui-Artola, Alberto
  • Trouillet, Alix
  • Bellani, Sebastiano
  • Banszerus, Luca
  • Andrieux-Ledier, Amandine
  • Bartali, Ruben
  • Balakrishnan, Nilanthy
  • Berger, Claire
  • Barjon, Julien
  • Backes, Claudia
  • Azpeitia, Jon
  • Vázquez, Ester
  • Alonso, Concepción
  • Berger, Reinhard
  • Martín, Cristina
  • Martin, Cristina
  • Arenal, Raul
  • Vazquez, Ester
  • Abdelkader, Amr
  • Assas, Mushref
  • Haigh, Sj
  • Nam, Yein
  • Rey, Irene De Lazaro Del
  • Pennock, Joanne
  • Newman, Leon
  • Lozano, Neus
  • Jasim, Dhifaf
  • Prestat, Eric
  • Lawrence, M. Jayne
  • Ashford, Marianne
  • Gennari, Arianna
  • Al-Ahmady, Zahraa S.
  • Marotta, Roberto
  • Mironov, Aleksandr
  • Donno, Roberto
  • Tirelli, Nicola
  • Crica, Livia
  • Vacchi, Isabella Anna
  • Ménard-Moyon, Cécilia
  • Rodrigues, Artur
  • Merino, Sonia
  • Yudasaka, Masako
  • Zhang, Minfang
  • Yang, Mei
  • Iijima, Sumio
  • Russier, Julie
  • Meneghetti, Moreno
  • Sureshbabu, Adukamparai Rajukrishnan
  • Kurapati, Rajendra
  • Bartolina, Isacco
  • Bartolini, Isacco
  • Hadad, Caroline
  • Kyriakou, Ioanna
  • Valdés, Jorge E.
  • Emfietzoglou, Dimitris
  • Denton Zanello, Cristian D.
  • García Molina, Rafael
  • Abril Sánchez, Isabel
  • Segura, Rodrigo
  • Vargas, Patricio
  • Celedón, Carlos
OrganizationsLocationPeople

article

Splenic Capture and In Vivo Intracellular Biodegradation of Biological-grade Graphene Oxide Sheets

  • Assas, Mushref
  • Haigh, Sj
  • Nam, Yein
  • Rey, Irene De Lazaro Del
  • Pennock, Joanne
  • Newman, Leon
  • Lozano, Neus
  • Jasim, Dhifaf
  • Kostarelos, Kostas
  • Prestat, Eric
  • Bussy, Cyrill
Abstract

Carbon nanomaterials, including 2D graphene-based materials (GBM) have shown promising applicability to drug delivery, tissue engineering, diagnostics and various other biomedical areas. However, to exploit the benefits of these materials in some of the areas mentioned, it is necessary to understand their possible toxicological implications and long-term fate in vivo. We previously demonstrated that following intravenous administration, 2D graphene oxide (GO) nanosheets are largely excreted via the kidneys, however, a small but significant portion of the material is sequestered in the spleen. Herein, we interrogate the potential consequences of this accumulation and the fate of the spleen-residing GO over a period of nine months. We show that our thoroughly characterized GO materials are not associated with any detectable pathological consequences in the spleen. Using confocal Raman mapping of tissue sections, we determine the sub-organ biodistribution of GO at various time points after administration. The cells largely responsible for taking up the material are confirmed using immunohistochemistry coupled with Raman spectroscopy, and transmission electron microscopy (TEM), respectively. This combination of techniques identified cells of the splenic marginal zone as the main site of GO bioaccumulation. In addition, through analyses using both bright-field TEM coupled with electron diffraction, and Raman spectroscopy, we reveal direct evidence of in vivo intracellular biodegradation of GO sheets with ultrastructural precision. This work offers critical information about biological processing and degradation of thin graphene oxide sheets by normal mammalian tissue, indicating that further development and exploitation of GO in biomedicine would be possible.

Topics
  • impedance spectroscopy
  • Carbon
  • electron diffraction
  • transmission electron microscopy
  • Raman spectroscopy