Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Edelthalhammer, K. F.

  • Google
  • 1
  • 11
  • 13

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2020Ultralong Spin Lifetime in Light Alkali Atom Doped Graphene13citations

Places of action

Chart of shared publication
Pichler, Thomas
1 / 32 shared
Hirsch, A.
1 / 21 shared
Forro, L.
1 / 5 shared
Nafradi, B.
1 / 2 shared
Hauke, F.
1 / 5 shared
Markus, B. G.
1 / 2 shared
Chacon-Torres, Julio C.
1 / 3 shared
Eckerlein, P.
1 / 1 shared
Szirmai, P.
1 / 3 shared
Simon, F.
1 / 15 shared
Nemes, N. M.
1 / 6 shared
Chart of publication period
2020

Co-Authors (by relevance)

  • Pichler, Thomas
  • Hirsch, A.
  • Forro, L.
  • Nafradi, B.
  • Hauke, F.
  • Markus, B. G.
  • Chacon-Torres, Julio C.
  • Eckerlein, P.
  • Szirmai, P.
  • Simon, F.
  • Nemes, N. M.
OrganizationsLocationPeople

article

Ultralong Spin Lifetime in Light Alkali Atom Doped Graphene

  • Pichler, Thomas
  • Hirsch, A.
  • Forro, L.
  • Nafradi, B.
  • Hauke, F.
  • Markus, B. G.
  • Chacon-Torres, Julio C.
  • Eckerlein, P.
  • Edelthalhammer, K. F.
  • Szirmai, P.
  • Simon, F.
  • Nemes, N. M.
Abstract

Today's great challenges of energy and informational technologies are addressed with a singular compound, Li-and Na-doped few-layer graphene. All that is impossible for graphite (homogeneous and high-level Na doping) and unstable for single-layer graphene works very well for this structure. The transformation of the Raman G line to a Fano line shape and the emergence of strong, metallic-like electron spin resonance (ESR) modes attest the high level of graphene doping in liquid ammonia for both kinds of alkali atoms. The spin-relaxation time in our materials, deduced from the ESR line width, is 6-8 ns, which is comparable to the longest values found in spintransport experiments on ultrahigh-mobility graphene flakes. This could qualify our material as a promising candidate in spintronics devices. On the other hand, the successful sodium doping, this being a highly abundant metal, could be an encouraging alternative to lithium batteries.

Topics
  • impedance spectroscopy
  • compound
  • mobility
  • experiment
  • Sodium
  • Lithium
  • electron spin resonance spectroscopy