Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Goerlich, Dirk

  • Google
  • 1
  • 6
  • 3

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2020A Method to Quantify Molecular Diffusion within Thin Solvated Polymer Films: A Case Study on Films of Natively Unfolded Nucleoporins3citations

Places of action

Chart of shared publication
Bano, Fouzia
1 / 2 shared
Schiinemann, Juergen
1 / 1 shared
Richter, Ralf P.
1 / 2 shared
Jana, Saikat
1 / 3 shared
Frost, Rickard
1 / 2 shared
Debarre, Delphine
1 / 1 shared
Chart of publication period
2020

Co-Authors (by relevance)

  • Bano, Fouzia
  • Schiinemann, Juergen
  • Richter, Ralf P.
  • Jana, Saikat
  • Frost, Rickard
  • Debarre, Delphine
OrganizationsLocationPeople

article

A Method to Quantify Molecular Diffusion within Thin Solvated Polymer Films: A Case Study on Films of Natively Unfolded Nucleoporins

  • Bano, Fouzia
  • Schiinemann, Juergen
  • Richter, Ralf P.
  • Goerlich, Dirk
  • Jana, Saikat
  • Frost, Rickard
  • Debarre, Delphine
Abstract

We present a method to probe molecular and nanoparticle diffusion within thin, solvated polymer coatings. The device exploits the confinement with well-defined geometry that forms at the interface between a planar and a hemispherical surface (of which at least one is coated with polymers) in close contact and uses this confinement to analyze diffusion processes without interference of exchange with and diffusion in the bulk solution. With this method, which we call plane–sphere confinement microscopy (PSCM), information regarding the partitioning of molecules between the polymer coating and the bulk liquid is also obtained. Thanks to the shape of the confined geometry, diffusion and partitioning can be mapped as a function of compression and concentration of the coating in a single experiment. The method is versatile and can be integrated with conventional optical microscopes; thus it should find widespread use in the many application areas exploiting functional polymer coatings. We demonstrate the use of PSCM using brushes of natively unfolded nucleoporin domains rich in phenylalanine–glycine repeats (FG domains). A meshwork of FG domains is known to be responsible for the selective transport of nuclear transport receptors (NTRs) and their macromolecular cargos across the nuclear envelope that separates the cytosol and the nucleus of living cells. We find that the selectivity of NTR uptake by FG domain films depends sensitively on FG domain concentration and that the interaction of NTRs with FG domains obstructs NTR movement only moderately. These observations contribute important information to better understand the mechanisms of selective NTR transport.

Topics
  • nanoparticle
  • impedance spectroscopy
  • surface
  • polymer
  • experiment
  • microscopy