Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Afanasiev, Dmytro

  • Google
  • 3
  • 39
  • 105

Uzhhorod National University

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2024The 2024 magnonics roadmap56citations
  • 2020Coupling Lattice Instabilities across the Interface in Ultrathin Oxide Heterostructures20citations
  • 2020Temperature dependent inverse spin Hall effect in Co/Pt spintronic emitters29citations

Places of action

Chart of shared publication
Fowlie, Jennifer
1 / 8 shared
Caviglia, Andrea
2 / 4 shared
Gariglio, Stefano
1 / 6 shared
Manca, Nicola
1 / 8 shared
Autieri, Carmine
1 / 11 shared
Van Thiel, Thierry
2 / 4 shared
Hortensius, Jorrit
1 / 1 shared
Fullerton, E. E.
1 / 3 shared
Matthiesen, M.
1 / 1 shared
Medapalli, R.
1 / 1 shared
Chart of publication period
2024
2020

Co-Authors (by relevance)

  • Fowlie, Jennifer
  • Caviglia, Andrea
  • Gariglio, Stefano
  • Manca, Nicola
  • Autieri, Carmine
  • Van Thiel, Thierry
  • Hortensius, Jorrit
  • Fullerton, E. E.
  • Matthiesen, M.
  • Medapalli, R.
OrganizationsLocationPeople

article

Coupling Lattice Instabilities across the Interface in Ultrathin Oxide Heterostructures

  • Fowlie, Jennifer
  • Caviglia, Andrea
  • Afanasiev, Dmytro
  • Gariglio, Stefano
  • Manca, Nicola
  • Autieri, Carmine
  • Van Thiel, Thierry
Abstract

<p>Oxide heterointerfaces constitute a rich platform for realizing novel functionalities in condensed matter. A key aspect is the strong link between structural and electronic properties, which can be modified by interfacing materials with distinct lattice symmetries. Here, we determine the effect of the cubic-tetragonal distortion of SrTiO<sub>3</sub> on the electronic properties of thin films of SrIrO<sub>3</sub>, a topological crystalline metal hosting a delicate interplay between spin-orbit coupling and electronic correlations. We demonstrate that below the transition temperature at 105 K, SrIrO<sub>3</sub> orthorhombic domains couple directly to tetragonal domains in SrTiO<sub>3</sub>. This forces the in-phase rotational axis to lie in-plane and creates a binary domain structure in the SrIrO<sub>3</sub> film. The close proximity to the metal-insulator transition in ultrathin SrIrO<sub>3</sub> causes the individual domains to have strongly anisotropic transport properties, driven by a reduction of bandwidth along the in-phase axis. The strong structure-property relationships in perovskites make these compounds particularly suitable for static and dynamic coupling at interfaces, providing a promising route towards realizing novel functionalities in oxide heterostructures.</p>

Topics
  • perovskite
  • impedance spectroscopy
  • compound
  • phase
  • thin film
  • anisotropic