Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Jackson, Grayson L.

  • Google
  • 2
  • 5
  • 13

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2020Grain Growth and Coarsening Dynamics in a Compositionally Asymmetric Block Copolymer Revealed by X-ray Photon Correlation Spectroscopy6citations
  • 2018Dynamics of a Supercooled Disordered Sphere-Forming Diblock Copolymer as Determined by X-ray Photon Correlation and Dynamic Mechanical Spectroscopies7citations

Places of action

Chart of shared publication
Maher, Michael J.
2 / 12 shared
Lewis, Ronald M.
2 / 5 shared
Bates, Frank S.
2 / 90 shared
Narayanan, Suresh
2 / 5 shared
Beech, Haley K.
1 / 1 shared
Chart of publication period
2020
2018

Co-Authors (by relevance)

  • Maher, Michael J.
  • Lewis, Ronald M.
  • Bates, Frank S.
  • Narayanan, Suresh
  • Beech, Haley K.
OrganizationsLocationPeople

article

Dynamics of a Supercooled Disordered Sphere-Forming Diblock Copolymer as Determined by X-ray Photon Correlation and Dynamic Mechanical Spectroscopies

  • Beech, Haley K.
  • Maher, Michael J.
  • Lewis, Ronald M.
  • Bates, Frank S.
  • Jackson, Grayson L.
  • Narayanan, Suresh
Abstract

<p>We report the dynamic behavior of a sphere-forming poly(styrene)-block-poly(1,4-butadiene) (PS-PB) diblock copolymer comprising 20 vol % PB below the order-disorder transition temperature (T<sub>ODT</sub>= 153 °C) using dynamic mechanical spectroscopy (DMS) and X-ray photon correlation spectroscopy (XPCS). A time-temperature transformation diagram was constructed by monitoring the elasticity of the sample as a function of time following rapid quenches of the disordered melt to various temperatures T &lt; T<sub>ODT</sub>. Isothermal frequency spectra acquired prior to nucleation of the ordered BCC phase were time-temperature superposed, and the shift factors were fit using the Williams-Landel-Ferry (WLF) equation. For comparison, XPCS measurements were used to extract relaxation times from the supercooled liquid as a function of the quench temperature. Alignment of the temperature dependence of the XPCS-based relaxation times with that of the WLF shift factors in the range T = 125-140 °C indicates that both techniques probe the fluctuating mesomorphic micelle dynamics mediated by the relaxation modes of individual chains, including interparticle chain exchange. For deeper quench temperatures, T<sub>ODT</sub>- T ≥ 28 °C, departure of the XPCS time constant from WLF behavior is consistent with a jamming transition, analogous to that encountered in concentrated colloidal systems. We postulate that the dominant relaxation mode in the supercooled disordered liquid transitions from ergodic dynamics governed by chain exchange to a nonergodic regime dominated by local rearrangement of micellar particles at T ≈ T<sub>erg</sub>, where T<sub>erg</sub>denotes the ergodicity temperature.</p>

Topics
  • impedance spectroscopy
  • melt
  • elasticity
  • forming
  • copolymer