People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Linder, Markus B.
Aalto University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2024Molecular Engineering of a Spider Silk and Mussel Foot Hybrid Protein Gives a Strong and Tough Biomimetic Adhesivecitations
- 2023Pulling and analyzing silk fibers from aqueous solution using a robotic devicecitations
- 2023Pulling and analyzing silk fibers from aqueous solution using a robotic devicecitations
- 2022Recombinant Spider Silk Protein and Delignified Wood Form a Strong Adhesive Systemcitations
- 2022Recombinant Spider Silk Protein and Delignified Wood Form a Strong Adhesive Systemcitations
- 2020Three-Dimensional Printed Cell Culture Model Based on Spherical Colloidal Lignin Particles and Cellulose Nanofibril-Alginate Hydrogelcitations
- 2020Methyl cellulose/cellulose nanocrystal nanocomposite fibers with high ductilitycitations
- 2019Binding Forces of Cellulose Binding Modules on Cellulosic Nanomaterialscitations
- 2018Modification of carbon nanotubes by amphiphilic glycosylated proteinscitations
- 2018Self-Coacervation of a Silk-Like Protein and Its Use As an Adhesive for Cellulosic Materialscitations
- 2015Modular Architecture of Protein Binding Units for Designing Properties of Cellulose Nanomaterialscitations
- 2015Enhanced plastic deformations of nanofibrillated cellulose film by adsorbed moisture and protein-mediated interactionscitations
- 2014Structural characterization and tribological evaluation of quince seed mucilagecitations
- 2013The role of hemicellulose in nanofibrillated cellulose networkscitations
- 2013Drug release from nanoparticles embedded in four different nanofibrillar cellulose aerogelscitations
- 2012Adhesion and tribological properties of hydrophobin proteins in aqueous lubrication on stainless steel surfacescitations
Places of action
Organizations | Location | People |
---|
article
Self-Coacervation of a Silk-Like Protein and Its Use As an Adhesive for Cellulosic Materials
Abstract
Liquid-liquid phase separation of biomacromolecules plays a critical role in many of their functions, both as cellular components and in structural assembly. Phase separation is also a key mechanism in the assembly of engineered recombinant proteins for the general aim to build new materials with unique structures and properties. Here the phase separation process of an engineered protein with a block-architecture was studied. As a central block, we used a modified spider silk sequence, predicted to be unstructured. In each terminus, folded globular blocks were used. We studied the kinetics and mechanisms of phase formation and analyzed the evolving structures and their viscoelastic properties. Individual droplets were studied with a micropipette technique, showing both how properties vary between individual drops and explaining overall bulk rheological properties. A very low surface energy allowed easy deformation of droplets and led to efficient infiltration into cellulosic fiber networks. Based on these findings, we demonstrated an efficient use of the phase-separated material as an adhesive for cellulose. We also conclude that the condensed state is metastable, showing an ensemble of properties in individual droplets and that an understanding of protein phase behavior will lead to developing a wider use of proteins as structural polymers. ; Peer reviewed