People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Reineke, Theresa M.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (14/14 displayed)
- 2024Mechanical Recycling of 3D-Printed Thermosets for Reuse in Vat Photopolymerizationcitations
- 2023Radical ring-opening polymerization of sustainably-derived thionoisochromanonecitations
- 2023Biobased Copolymers via Cationic Ring-Opening Copolymerization of Levoglucosan Derivatives and ϵ-Caprolactonecitations
- 2023Biobased and degradable thiol-ene networks from levoglucosan for sustainable 3D printingcitations
- 2021Degradable polyanhydride networks derived from itaconic acidcitations
- 2021Structural Basis for the Different Mechanical Behaviors of Two Chemically Analogous, Carbohydrate-Derived Thermosetscitations
- 2021Sustainable advances in SLA/DLP 3D printing materials and processescitations
- 2021Regioregular Polymers from Biobased (R)-1,3-Butylene Carbonatecitations
- 2019Properties of Chemically Cross-Linked Methylcellulose Gelscitations
- 2018Isothermal Titration Calorimetry for the Screening of Aflatoxin B1 Surface-Enhanced Raman Scattering Sensor Affinity Agentscitations
- 2016Acrylic Triblock Copolymers Incorporating Isosorbide for Pressure Sensitive Adhesivescitations
- 2015Isosorbide-based polymethacrylatescitations
- 2014Degradable thermosets from sugar-derived dilactonescitations
- 2012Glucose-functionalized, serum-stable polymeric micelles from the combination of anionic and RAFT polymerizationscitations
Places of action
Organizations | Location | People |
---|
article
Biobased Copolymers via Cationic Ring-Opening Copolymerization of Levoglucosan Derivatives and ϵ-Caprolactone
Abstract
<p>Simultaneous ring-opening copolymerization is a powerful strategy for the synthesis of highly functional copolymers from different types of cyclic monomers. Although copolymers are essential to the plastics industry, environmental concerns associated with current fossil-fuel-based synthetic polymers have led to an increasing interest in the use of renewable feedstock for polymer synthesis. Herein, we report a scalable synthetic platform to afford unique polysaccharides with different pendant functional groups from biomass-derived levoglucosan and ϵ-caprolactone via cationic ring-opening copolymerization (cROCOP). Biocompatible and recyclable bismuth triflate was identified as the optimal catalyst for cROCOP of levoglucosan. Copolymers from tribenzyl levoglucosan and ϵ-caprolactone, as well as from tribenzyl and triallyl levoglucosan, were successfully synthesized. The tribenzyl levoglucosan monomer composition ranged from 16% to 64% in the copolymers with ϵ-caprolactone and 22% to 79% in the copolymers with triallyl levoglucosan. The allylic levoglucosan copolymer can be utilized as a renewably derived scaffold to modify copolymer properties and create other polymer architectures via postpolymerization modification. Monomer reactivity ratios were determined to investigate the copolymer microstructure, indicating that levoglucosan-based copolymers have a gradient architecture. Additionally, we demonstrated that the copolymer glass transition temperature (T<sub>g</sub>, ranging from −44.3 to 33.8 °C), thermal stability, and crystallization behavior could be tuned based on the copolymer composition. Overall, this work underscores the utility of levoglucosan as a bioderived feedstock for the development of functional sugar-based copolymers with applications ranging from sustainable materials to biomaterials.</p>