People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Reineke, Theresa M.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (14/14 displayed)
- 2024Mechanical Recycling of 3D-Printed Thermosets for Reuse in Vat Photopolymerizationcitations
- 2023Radical ring-opening polymerization of sustainably-derived thionoisochromanonecitations
- 2023Biobased Copolymers via Cationic Ring-Opening Copolymerization of Levoglucosan Derivatives and ϵ-Caprolactonecitations
- 2023Biobased and degradable thiol-ene networks from levoglucosan for sustainable 3D printingcitations
- 2021Degradable polyanhydride networks derived from itaconic acidcitations
- 2021Structural Basis for the Different Mechanical Behaviors of Two Chemically Analogous, Carbohydrate-Derived Thermosetscitations
- 2021Sustainable advances in SLA/DLP 3D printing materials and processescitations
- 2021Regioregular Polymers from Biobased (R)-1,3-Butylene Carbonatecitations
- 2019Properties of Chemically Cross-Linked Methylcellulose Gelscitations
- 2018Isothermal Titration Calorimetry for the Screening of Aflatoxin B1 Surface-Enhanced Raman Scattering Sensor Affinity Agentscitations
- 2016Acrylic Triblock Copolymers Incorporating Isosorbide for Pressure Sensitive Adhesivescitations
- 2015Isosorbide-based polymethacrylatescitations
- 2014Degradable thermosets from sugar-derived dilactonescitations
- 2012Glucose-functionalized, serum-stable polymeric micelles from the combination of anionic and RAFT polymerizationscitations
Places of action
Organizations | Location | People |
---|
article
Structural Basis for the Different Mechanical Behaviors of Two Chemically Analogous, Carbohydrate-Derived Thermosets
Abstract
<p>Two renewable, structurally analogous monomers, isosorbide undecenoate (IU) and glucarodilactone undecenoate (GDLU) reacted with pentaerythritol tetrakis(3-mercaptopropionate) (PETT) via thiol-ene photopolymerization to form IU-PETT and GDLU-PETT thermosets. Despite their chemical similarity, uniaxial tensile testing showed that GDLU-PETT exhibited a strain-hardening behavior and is significantly tougher than IU-PETT. To understand this observation, in situ tensile testing and wide-angle X-ray scattering experiments (WAXS) were conducted. While the 2D WAXS patterns of IU-PETT displayed an isotropic halo during uniaxial deformation, they exhibited a change from an isotropic halo to a pair of scattering arcs for the GDLU-PETT samples. Density functional theory calculations further revealed that the GDLU alkyl chains are less angled than the IU alkyl chains. Based on these results, we postulate that the GDLU molecules can more easily order and align during uniaxial deformation, hence increasing intermolecular interactions between the GDLU molecules and contributing to the observed strain hardening behavior of their thermosets. This study exemplifies how molecules with subtle differences in their chemical structures can alter the structures and thermophysical properties of the resulting polymers in unpredictable ways.</p>