Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Saidy, Navid T.

  • Google
  • 2
  • 11
  • 122

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2020Melt Electrowriting of Complex 3D Anatomically Relevant Scaffolds82citations
  • 2020Personalized, Mechanically Strong, and Biodegradable Coronary Artery Stents via Melt Electrowriting40citations

Places of action

Chart of shared publication
De-Juan-Pardo, Elena M.
1 / 10 shared
Mela, Petra
1 / 3 shared
Menne, Matthias
1 / 1 shared
Henry, Tim
1 / 1 shared
Rojas-González, Diana M.
1 / 1 shared
Shabab, Tara
2 / 2 shared
Somszor, Katarzyna
1 / 1 shared
Karimi, Fatemeh
1 / 2 shared
Ellis, Amanda V.
1 / 3 shared
Heath, Daniel E.
1 / 1 shared
Oconnor, Andrea J.
1 / 1 shared
Chart of publication period
2020

Co-Authors (by relevance)

  • De-Juan-Pardo, Elena M.
  • Mela, Petra
  • Menne, Matthias
  • Henry, Tim
  • Rojas-González, Diana M.
  • Shabab, Tara
  • Somszor, Katarzyna
  • Karimi, Fatemeh
  • Ellis, Amanda V.
  • Heath, Daniel E.
  • Oconnor, Andrea J.
OrganizationsLocationPeople

article

Personalized, Mechanically Strong, and Biodegradable Coronary Artery Stents via Melt Electrowriting

  • Somszor, Katarzyna
  • Karimi, Fatemeh
  • Ellis, Amanda V.
  • Heath, Daniel E.
  • Saidy, Navid T.
  • Oconnor, Andrea J.
  • Shabab, Tara
Abstract

<p>Biodegradable coronary artery stents are sought-after alternatives to permanent stents. These devices are designed to degrade after the blood vessel heals, leaving behind a regenerated artery. The original generation of clinically available biodegradable stents required significantly thicker struts (∼150 μm) than nondegradable ones to ensure sufficient mechanical strength. However, these thicker struts proved to be a key contributor to the clinical failure of the stents. A current challenge lies in the fabrication of stents that possess both thin struts and adequate mechanical strength. In this contribution, we describe a method for the bottom-up, additive manufacturing of biodegradable composite stents with ultrathin fibers and superior mechanical properties compared to the base polymer. Specifically, we illustrate that melt electrowriting (MEW) can be used to 3D print composite structures with thin struts (60-80 μm) and a high degree of geometric complexity required for stenting applications. Additionally, this technology allows additive manufacture of personalized stents that are customized to a patient's unique anatomy and disease state. Furthermore, we illustrate that polycaprolactone-reduced graphene oxide nanocomposites have superior mechanical properties compared to original polycaprolactone without detriment to the material's cytocompatibility and that customizable stent-like structures can be fabricated from these materials with struts as thin as 60 μm, well below the target value for clinical use of 80 μm.</p>

Topics
  • nanocomposite
  • polymer
  • melt
  • strength
  • additive manufacturing