Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kalender, Kemal

  • Google
  • 1
  • 7
  • 9

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Extending the Shelf Life of Bananas with Cinnamaldehyde-Impregnated Halloysite/Polypropylene Nanocomposite Films9citations

Places of action

Chart of shared publication
Genc, Mehmet Hayri
1 / 1 shared
Yalcin, Izzet
1 / 1 shared
Unal, Serkan
1 / 6 shared
Unal, Hayriye
1 / 6 shared
Kolgesiz, Sarp
1 / 2 shared
Koken, Deniz
1 / 3 shared
Tas, Cuneyt Erdinc
1 / 11 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Genc, Mehmet Hayri
  • Yalcin, Izzet
  • Unal, Serkan
  • Unal, Hayriye
  • Kolgesiz, Sarp
  • Koken, Deniz
  • Tas, Cuneyt Erdinc
OrganizationsLocationPeople

article

Extending the Shelf Life of Bananas with Cinnamaldehyde-Impregnated Halloysite/Polypropylene Nanocomposite Films

  • Kalender, Kemal
  • Genc, Mehmet Hayri
  • Yalcin, Izzet
  • Unal, Serkan
  • Unal, Hayriye
  • Kolgesiz, Sarp
  • Koken, Deniz
  • Tas, Cuneyt Erdinc
Abstract

<p>Ethylene, the ripening hormone produced by climacteric plants, is an important parameter that determines the shelf life of fresh fruits. Cinnamaldehyde (CA) encapsulated in halloysite nanotube (HNT) nanocarriers was studied as an ethylene production inhibition agent. The slow release of CA from HNT-CA nanohybrids was demonstrated to last for over 180 d and cause inhibition of ethylene production in bananas. The HNT-CA nanohybrids were incorporated into polypropylene (PP) via melt extrusion, resulting in PP/HNT-CA nanocomposite films with suitable mechanical properties for use as flexible packaging. Bananas stored in PP/HNT-CA nanocomposite film bags for 7 d presented significantly lower weight loss, higher firmness, and higher color scores, indicating freshness, than bananas stored in neat PP film bags. The nanocomposite films presented in this study were shown to slow down the ripening by inhibiting ethylene production, and they have strong potential as active food packaging materials that can prevent spoilage of ethylene-sensitive fresh fruits.</p>

Topics
  • nanocomposite
  • impedance spectroscopy
  • nanotube
  • melt
  • melt extrusion