Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Climente, Juan I.

  • Google
  • 10
  • 18
  • 349

Universitat Jaume I

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (10/10 displayed)

  • 2024The Electronic Structure of Biexcitons in Metal Halide Perovskite Nanoplatelets2citations
  • 2023Excitons in metal halide perovskite nanoplatelets: an effective mass description of polaronic, dielectric and quantum confinement effects8citations
  • 2020Chemi-Structural Stabilization of Formamidinium Lead Iodide Perovskite by Using Embedded Quantum Dots106citations
  • 2020Chemi-Structural Stabilization of Formamidinium Lead Iodide Perovskite by Using Embedded Quantum Dots106citations
  • 2019Chemi-Structural Stabilization of Formamidinium Lead Iodide Perovskite by Using Embedded Quantum Dots for High-Performance Solar Cellscitations
  • 2016Piezoelectric Control of the Exciton Wave Function in Colloidal CdSe/CdS Nanocrystals28citations
  • 2014Large hole spin anticrossings in InAs/GaAs double quantum dots7citations
  • 2013Auger Recombination Suppression in Nanocrystals with Asymmetric Electron–Hole Confinement77citations
  • 2013Effect of interface alloying and band-alignment on the Auger recombination of heteronanocrystals6citations
  • 2012Dielectric polarization in axially-symmetric nanostructures: A computational approach9citations

Places of action

Chart of shared publication
Planelles, Josep
10 / 11 shared
Movilla, Jose L.
5 / 5 shared
Ngo, Thi Tuyen
3 / 8 shared
Macias-Pinilla, David F.
3 / 3 shared
Masi, Sofia
3 / 26 shared
Echeverría-Arrondo, C.
2 / 2 shared
Mora-Sero, Ivan
3 / 64 shared
Salim, K. M. Muhammed
1 / 1 shared
Mendez, P. F.
2 / 2 shared
López-Fraguas, Eduardo
3 / 5 shared
Muhammed, Kunnummal
1 / 4 shared
Echeverría-Arrondo, Carlos
1 / 8 shared
Mendez, Perla F.
1 / 1 shared
Sk, Muhammed
1 / 1 shared
Moreels, Iwan
1 / 8 shared
Rajadell Viciano, Fernando
2 / 3 shared
Segarra, Carlos
1 / 1 shared
Polovitsyn, Anatolii
1 / 3 shared
Chart of publication period
2024
2023
2020
2019
2016
2014
2013
2012

Co-Authors (by relevance)

  • Planelles, Josep
  • Movilla, Jose L.
  • Ngo, Thi Tuyen
  • Macias-Pinilla, David F.
  • Masi, Sofia
  • Echeverría-Arrondo, C.
  • Mora-Sero, Ivan
  • Salim, K. M. Muhammed
  • Mendez, P. F.
  • López-Fraguas, Eduardo
  • Muhammed, Kunnummal
  • Echeverría-Arrondo, Carlos
  • Mendez, Perla F.
  • Sk, Muhammed
  • Moreels, Iwan
  • Rajadell Viciano, Fernando
  • Segarra, Carlos
  • Polovitsyn, Anatolii
OrganizationsLocationPeople

article

Chemi-Structural Stabilization of Formamidinium Lead Iodide Perovskite by Using Embedded Quantum Dots

  • Ngo, Thi Tuyen
  • Planelles, Josep
  • Macias-Pinilla, David F.
  • Masi, Sofia
  • Echeverría-Arrondo, C.
  • Mora-Sero, Ivan
  • Salim, K. M. Muhammed
  • Climente, Juan I.
  • Mendez, P. F.
  • López-Fraguas, Eduardo
Abstract

The approaches to stabilize the perovskite structure of formamidinium lead iodide (FAPI) commonly result in a blue shift of the band gap, which limits the maximum photoconversion efficiency. Here, we report the use of PbS colloidal quantum dots (QDs) as a stabilizing agent, preserving the original low band gap of 1.5 eV. The surface chemistry of PbS plays a pivotal role by developing strong bonds with the black phase but weak ones with the yellow phase. As a result, a stable perovskite FAPI black phase can be formed at temperatures as low as 85 °C in just 10 min, setting a record of concomitantly fast and low-temperature formation for FAPI, with important consequences for industrialization. FAPI thin films obtained through this procedure reach an open-circuit potential (Voc) of 1.105 V, 91% of the maximum theoretical Voc, and preserve the efficiency for more than 700 h. These findings reveal the potential of strategies exploiting the chemi-structural properties of external additives to relax the tolerance factor and optimize the optoelectronic performance of perovskite materials.

Topics
  • perovskite
  • surface
  • phase
  • thin film
  • quantum dot