People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Jeangros, Quentin
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2024Ion-induced field screening as a dominant factor in perovskite solar cell operational stabilitycitations
- 2024Pizza oven processing of organohalide perovskites (POPOP): a simple, versatile and efficient vapor deposition methodcitations
- 2024A Universal Perovskite/C60 Interface Modification via Atomic Layer Deposited Aluminum Oxide for Perovskite Solar Cells and Perovskite–Silicon Tandemscitations
- 2024Alleviating nanostructural phase impurities enhances the optoelectronic properties, device performance and stability of cesium-formamidinium metal–halide perovskitescitations
- 2024Alleviating nanostructural phase impurities enhances the optoelectronic properties, device performance and stability of cesium-formamidinium metal–halide perovskitescitations
- 2024A universal perovskite/C60 interface modification via atomic layer deposited aluminum oxide for perovskite solar cells and perovskite–silicon tandemscitations
- 2023Interface passivation for 31.25%-efficient perovskite/silicon tandem solar cellscitations
- 2021Multimodal Microscale Imaging of Textured Perovskite-Silicon Tandem Solar Cells.citations
- 2021Multimodal Microscale Imaging of Textured Perovskite-Silicon Tandem Solar Cells.
- 2021Vapor transport deposition of methylammonium iodide for perovskite solar cellscitations
- 2020Instability of p-i-n perovskite solar cells under reverse biascitations
- 2018Amorphous gallium oxide grown by low-temperature PECVDcitations
- 2018A passivating contact for silicon solar cells formed during a single firing thermal annealingcitations
- 2017Enhancing the optoelectronic properties of amorphous zinc tin oxide by subgap defect passivationcitations
- 2010In situ redox cycle of a nickel–YSZ fuel cell anode in an environmental transmission electron microscopecitations
- 2010In situ redox cycle of a nickel–YSZ fuel cell anode in an environmental transmission electron microscopecitations
Places of action
Organizations | Location | People |
---|
article
Multimodal Microscale Imaging of Textured Perovskite-Silicon Tandem Solar Cells.
Abstract
Halide perovskite/crystalline silicon (c-Si) tandem solar cells promise power conversion efficiencies beyond the limits of single-junction cells. However, the local light-matter interactions of the perovskite material embedded in this pyramidal multijunction configuration, and the effect on device performance, are not well understood. Here, we characterize the microscale optoelectronic properties of the perovskite semiconductor deposited on different c-Si texturing schemes. We find a strong spatial and spectral dependence of the photoluminescence (PL) on the geometrical surface constructs, which dominates the underlying grain-to-grain PL variation found in halide perovskite films. The PL response is dependent upon the texturing design, with larger pyramids inducing distinct PL spectra for valleys and pyramids, an effect which is mitigated with small pyramids. Further, optimized quasi-Fermi level splittings and PL quantum efficiencies occur when the c-Si large pyramids have had a secondary smoothing etch. Our results suggest that a holistic optimization of the texturing is required to maximize light in- and out-coupling of both absorber layers and there is a fine balance between the optimal geometrical configuration and optoelectronic performance that will guide future device designs.