Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Lee, Geonhui

  • Google
  • 1
  • 12
  • 132

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2021CO2 Electroreduction to Formate at a Partial Current Density of 930 mA cm-2 with InP Colloidal Quantum Dot Derived Catalysts132citations

Places of action

Chart of shared publication
Sagar, Laxmi Kishore
1 / 2 shared
Sargent, Edward H.
1 / 21 shared
Ip, Alexander H.
1 / 1 shared
Arquer, F. Pelayo Garciá De
1 / 1 shared
Won, Da Hye
1 / 1 shared
Miao, Rui Kai
1 / 1 shared
Yan, Yu
1 / 1 shared
Bertens, Koen
1 / 2 shared
Grigioni, Ivan
1 / 3 shared
Sinton, David
1 / 4 shared
Li, Yuguang C.
1 / 2 shared
Abed, Jehad
1 / 3 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Sagar, Laxmi Kishore
  • Sargent, Edward H.
  • Ip, Alexander H.
  • Arquer, F. Pelayo Garciá De
  • Won, Da Hye
  • Miao, Rui Kai
  • Yan, Yu
  • Bertens, Koen
  • Grigioni, Ivan
  • Sinton, David
  • Li, Yuguang C.
  • Abed, Jehad
OrganizationsLocationPeople

article

CO2 Electroreduction to Formate at a Partial Current Density of 930 mA cm-2 with InP Colloidal Quantum Dot Derived Catalysts

  • Sagar, Laxmi Kishore
  • Sargent, Edward H.
  • Ip, Alexander H.
  • Arquer, F. Pelayo Garciá De
  • Won, Da Hye
  • Miao, Rui Kai
  • Yan, Yu
  • Bertens, Koen
  • Grigioni, Ivan
  • Lee, Geonhui
  • Sinton, David
  • Li, Yuguang C.
  • Abed, Jehad
Abstract

We report formate production via CO<sub>2</sub> electroreduction at a Faradaic efficiency (FE) of 93% and a partial current density of 930 mA cm<sup>-2</sup>, an activity level of potential industrial interest based on prior techno-economic analyses. We devise a catalyst synthesized using InP colloidal quantum dots (CQDs): The capping ligand exchange introduces surface sulfur, and XPS reveals the generation, <i>operando</i>, of an active catalyst exhibiting sulfur-protected oxidized indium and indium metal. Surface indium metal sites adsorb and reduce CO<sub>2</sub> molecules, while sulfur sites cleave water and provide protons. The abundance of exposed surface indium sites per quantum dot enables the high formate productivity achieved at low catalyst loadings. The high conductivity of the layer of nanoparticles under negative potential sustains the large current densities.

Topics
  • nanoparticle
  • density
  • surface
  • x-ray photoelectron spectroscopy
  • current density
  • quantum dot
  • Indium