Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Batkulwar, Kedar

  • Google
  • 1
  • 5
  • 99

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2018Advanced glycation end products modulate amyloidogenic APP processing and Tau phosphorylation: a mechanistic link between glycation and the development of Alzheimer’s disease99citations

Places of action

Chart of shared publication
Kulkarni, Mahesh
1 / 1 shared
Godbole, Rashmi
1 / 1 shared
Banarjee, Reema
1 / 1 shared
Kassaar, Omar
1 / 1 shared
Williams, Robert
1 / 5 shared
Chart of publication period
2018

Co-Authors (by relevance)

  • Kulkarni, Mahesh
  • Godbole, Rashmi
  • Banarjee, Reema
  • Kassaar, Omar
  • Williams, Robert
OrganizationsLocationPeople

article

Advanced glycation end products modulate amyloidogenic APP processing and Tau phosphorylation: a mechanistic link between glycation and the development of Alzheimer’s disease

  • Kulkarni, Mahesh
  • Batkulwar, Kedar
  • Godbole, Rashmi
  • Banarjee, Reema
  • Kassaar, Omar
  • Williams, Robert
Abstract

<p>Advanced glycation end products (AGEs) are implicated in the pathology of Alzheimer's disease (AD), as they induce neurodegeneration following interaction with the receptor for AGE (RAGE). This study aimed to establish a mechanistic link between AGE-RAGE signaling and AD pathology. AGE-induced changes in the neuro2a proteome were monitored by SWATH-MS. Western blotting and cell-based reporter assays were used to investigate AGE-RAGE regulated APP processing and tau phosphorylation in primary cortical neurons. Selected protein expression was validated in brain samples affected by AD. The AGE-RAGE axis altered proteome included increased expression of cathepsin B and asparagine endopeptidase (AEP), which mediated an increase in Aβ<sub>1-42</sub> formation and tau phosphorylation, respectively. Elevated cathepsin B, AEP, RAGE, and pTau levels were found in human AD brain, coincident with enhanced AGEs. This study demonstrates that the AGE-RAGE axis regulates Aβ<sub>1-42</sub> formation and tau phosphorylation via increased cathepsin B and AEP, providing a new molecular link between AGEs and AD pathology.</p>

Topics
  • mass spectrometry