Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Jayaraman, Ashish

  • Google
  • 5
  • 8
  • 200

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (5/5 displayed)

  • 2022Tuning Diblock Copolymer Particle Packing Symmetry with Variable Molecular Weight Core-Homopolymers18citations
  • 2021Quasicrystals and Their Approximants in a Crystalline–Amorphous Diblock Copolymer38citations
  • 2021Dodecagonal quasicrystals of oil-swollen ionic surfactant micelles26citations
  • 2020Emergence of a C15 Laves Phase in Diblock Polymer/Homopolymer Blends72citations
  • 2019Path-Dependent Preparation of Complex Micelle Packings of a Hydrated Diblock Oligomer46citations

Places of action

Chart of shared publication
Weigand, Steven
1 / 4 shared
Lindsay, Aaron P.
3 / 6 shared
Bates, Frank S.
3 / 90 shared
Mueller, Andreas J.
3 / 4 shared
Baez-Cotto, Carlos M.
1 / 3 shared
Mann, Tyler J.
1 / 2 shared
Zhang, Diana Y.
1 / 1 shared
Dewing, Beth L.
1 / 1 shared
Chart of publication period
2022
2021
2020
2019

Co-Authors (by relevance)

  • Weigand, Steven
  • Lindsay, Aaron P.
  • Bates, Frank S.
  • Mueller, Andreas J.
  • Baez-Cotto, Carlos M.
  • Mann, Tyler J.
  • Zhang, Diana Y.
  • Dewing, Beth L.
OrganizationsLocationPeople

article

Path-Dependent Preparation of Complex Micelle Packings of a Hydrated Diblock Oligomer

  • Zhang, Diana Y.
  • Dewing, Beth L.
  • Jayaraman, Ashish
Abstract

<p>Small-angle X-ray scattering analyses reveal that the hydrated diblock oligomer n-C<sub>16</sub>H<sub>23</sub>(OCH<sub>2</sub>CH<sub>2</sub>)<sub>20</sub>-OH (C<sub>16</sub>E<sub>20</sub> or Brij 58) forms lyotropic liquid crystals (LLCs) exhibiting face-centered cubic (FCC), body-centered cubic (BCC), Frank-Kasper (FK) A15, and cylindrical (H<sub>I</sub>) morphologies over the concentration range 30-65 wt % amphiphile. Heating LLCs comprising 54-59 wt % C<sub>16</sub>E<sub>20</sub> drives the temperature-dependent phase transition sequence: A15 BCCH<sub>I</sub>. However, rapidly quenching the resulting H<sub>I</sub> phase from 70 to 25 °C initially forms a BCC phase that isothermally transforms into a complex, tetragonal FK σ phase comprising 30 quasispherical micelles. The metastability of this micellar σ phase is shown to depend on the sample cooling rate, thermal quench depth, and isothermal annealing temperature. We rationalize the preference for the A15 structure at 25 °C in terms of minimizing unfavorable water/hydrophobic contacts, while maximizing local particle sphericity. The symmetry breaking transition kinetics in these micellar LLCs apparently stem from the temperature-dependent activation barriers for phase nucleation and growth, which are intimately coupled to the time scales for micelle reconfiguration by amphiphile chain exchange and their spatial rearrangement. These findings highlight how thermal processing influences nucleation and growth of the self-assembled morphologies of intrinsically reconfigurable, soft spherical particles.</p>

Topics
  • impedance spectroscopy
  • phase
  • phase transition
  • annealing
  • activation
  • X-ray scattering
  • quenching
  • liquid crystal
  • liquid-liquid chromatography