People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Akola, Jaakko
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (21/21 displayed)
- 2024Deposited PtGe clusters as active and durable catalysts for CO oxidationcitations
- 2024Graphite nucleation on (Al, Si, Mg)-nitrides : Elucidating the chemical interactions and turbostratic structures in spheroidal graphite cast ironscitations
- 2024Graphite nucleation on (Al, Si, Mg)-nitridescitations
- 2023Machine-learned model Hamiltonian and strength of spin-orbit interaction in strained Mg2X (X = Si, Ge, Sn, Pb)citations
- 2022Machine-learned model Hamiltonian and strength of spin-orbit interaction in strained Mg2X (X = Si, Ge, Sn, Pb)citations
- 2021Comparison of optical response from DFT random phase approximation and a low-energy effective modelcitations
- 2021Comparison of optical response from DFT random phase approximation and a low-energy effective model : Strained phosphorenecitations
- 2020Density functional simulations of pressurized Mg-Zn and Al-Zn alloyscitations
- 2020Strain-engineered widely tunable perfect absorption angle in black phosphorus from first principlescitations
- 2020Synergistic Computational-Experimental Discovery of Highly Selective PtCu Nanocluster Catalysts for Acetylene Semihydrogenationcitations
- 2020Atomistic simulations of early stage clusters in AlMg alloyscitations
- 2019Highly ductile amorphous oxide at room temperature and high strain ratecitations
- 2019Highly ductile amorphous oxide at room temperature and high strain ratecitations
- 2019Ultrahigh-pressure form of Si O2 glass with dense pyrite-type crystalline homologycitations
- 2019Atomistic simulations of early stage clusters in Al–Mg alloyscitations
- 2018Atomistic simulations of early stage clusters in AlMg alloyscitations
- 2016Tuning electronic properties of graphene heterostructures by amorphous-to-crystalline phase transitionscitations
- 2015Structure of amorphous Ag/Ge/S alloys: experimentally constrained density functional studycitations
- 2015The Prototype Phase Change Material Ge2Sb2Te5citations
- 2003Close packing of clusterscitations
- 2001Metallic evolution of small magnesium clusters
Places of action
Organizations | Location | People |
---|
article
Synergistic Computational-Experimental Discovery of Highly Selective PtCu Nanocluster Catalysts for Acetylene Semihydrogenation
Abstract
Semihydrogenation of acetylene (SHA) in an ethylene-rich stream is an important process for polymer industries. Presently, Pd-based catalysts have demonstrated good acetylene conversion (XC2H2), however, at the expense of ethylene selectivity (SC2H4). In this study, we have employed a systematic approach using density functional theory (DFT) to identify the best catalyst in a Cu-Pt system. The DFT results showed that with a 55 atom system at ∼1.1 Pt/Cu ratio for Pt28Cu27/Al2O3, the d-band center shifted -2.2 eV relative to the Fermi level leading to electron-saturated Pt, which allows only adsorption of ethylene via a π-bond, resulting in theoretical 99.7% SC2H4 at nearly complete XC2H2. Based on the DFT results, Pt-Cu/Al2O3 (PtCu) and Pt/Al2O3 (Pt) nanocatalysts were synthesized via cluster beam deposition (CBD), and their properties and activities were correlated with the computational predictions. For bimetallic PtCu, the electron microscopy results show the formation of alloys. The bimetallic PtCu catalyst closely mimics the DFT predictions in terms of both electronic structure, as confirmed by X-ray photoelectron spectroscopy, and catalytic activity. The alloying of Pt with Cu was responsible for the high C2H4 specific yield resulting from electron transfer between Cu and Pt, thus making PtCu a promising catalyst for SHA. ; Peer reviewed