Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Román-Ramírez, Luis Antonio

  • Google
  • 2
  • 5
  • 223

London South Bank University

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2020Organocatalysis for versatile polymer degradation97citations
  • 2019Poly(lactic acid) degradation into methyl lactate catalyzed by a well-defined Zn(II) complex126citations

Places of action

Chart of shared publication
Davidson, Matthew G.
1 / 10 shared
Jones, Matthew
2 / 5 shared
Mckeown, Paul
2 / 4 shared
Wood, Joseph
2 / 16 shared
Kamran, Muhammed
1 / 1 shared
Chart of publication period
2020
2019

Co-Authors (by relevance)

  • Davidson, Matthew G.
  • Jones, Matthew
  • Mckeown, Paul
  • Wood, Joseph
  • Kamran, Muhammed
OrganizationsLocationPeople

article

Poly(lactic acid) degradation into methyl lactate catalyzed by a well-defined Zn(II) complex

  • Román-Ramírez, Luis Antonio
  • Jones, Matthew
  • Mckeown, Paul
  • Wood, Joseph
Abstract

Poly(lactic acid) (PLA) was degraded to methyl lactate (Me-La) by an imino monophenolate Zn(1)2 catalyst in the presence of THF, as the solvent, and methanol, as the protic source. As well as solution-based polymerization and degradation, catalyst stability was assessed and discussed. The chemical degradation of four different commercial samples of PLA, varying in molecular weight, was studied. The effect of PLA concentration (0.05 to 0.2 g mL-1), reaction temperature (40 to 130 °C), and catalyst concentration (4 to 16 wt%) on conversion, yield and selectivity were studied and results statistically analyzed. Mass transfer limitations were assessed by utilizing two different PLA particle sizes and altering the stirring speed. Results revealed that the main variables affecting PLA degradation are temperature and catalyst concentration. It was possible to observe Me-La formation even at 40 °C although the reaction times were significantly longer when compared to the highest temperatures. Conversions of 100%, as determined by 1H NMR spectroscopy and GPC, were possible in short times (<15 min) depending on temperature and catalyst concentration. A reaction mechanism for the production of Me-La from PLA, which considers the formation of chain-end groups as intermediates is presented and values for the kinetic constants are determined from the model. The activation energy for the initial degradation step was in the range 39 to 66 kJ mol-1, decreasing with increasing catalyst loading.

Topics
  • impedance spectroscopy
  • activation
  • molecular weight
  • Nuclear Magnetic Resonance spectroscopy