Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Beek, Wouter Van

  • Google
  • 4
  • 32
  • 102

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2023The more the better11citations
  • 2022High entropy alloy nanoparticle formation at low temperaturescitations
  • 2019Structure-performance relationships on Co based Fischer – Tropsch synthesis catalysts: The more defect free the better39citations
  • 2013A combined in situ XAS-XRPD-Raman study of Fischer-Tropsch synthesis over a carbon supported Co catalyst52citations

Places of action

Chart of shared publication
Welten, Rahel L.
2 / 4 shared
Du, Jia
1 / 7 shared
Bøjesen, Espen D.
2 / 5 shared
Clausen, Christian M.
2 / 6 shared
Jensen, Kirsten M. Ø.
2 / 19 shared
Rossmeisl, Jan
2 / 51 shared
Stoian, Dragos
2 / 8 shared
Arenz, Matthias
2 / 23 shared
Schlegel, Nicolas
2 / 5 shared
Chen, Qinyi
2 / 4 shared
Pittkowski, Rebecca K.
1 / 7 shared
Rosenkranz, Asger W.
1 / 2 shared
Bucher, Jan
2 / 8 shared
Mathiesen, Jette Katja
1 / 4 shared
Nielsen, Tobias M.
2 / 5 shared
Rosenkranz, Asger Wulff
1 / 3 shared
Mathiesen, Jette K.
1 / 6 shared
Pittkowski, Rebecca
1 / 6 shared
Tsakoumis, Nikolaos E.
2 / 4 shared
Johnsen, Rune E.
2 / 15 shared
Lögdberg, Sara
1 / 3 shared
Myrstad, Rune
1 / 4 shared
Blekkan, Edd A.
1 / 2 shared
Patanou, Eleni
1 / 3 shared
Rytter, Erling
2 / 7 shared
Dehghan, Roya
1 / 3 shared
Holmen, Anders
1 / 4 shared
Rønning, Magnus
1 / 9 shared
Voronov, Alexey
1 / 3 shared
Walmsley, John C.
1 / 4 shared
Borg, Øyvind
1 / 3 shared
Chen, De
1 / 3 shared
Chart of publication period
2023
2022
2019
2013

Co-Authors (by relevance)

  • Welten, Rahel L.
  • Du, Jia
  • Bøjesen, Espen D.
  • Clausen, Christian M.
  • Jensen, Kirsten M. Ø.
  • Rossmeisl, Jan
  • Stoian, Dragos
  • Arenz, Matthias
  • Schlegel, Nicolas
  • Chen, Qinyi
  • Pittkowski, Rebecca K.
  • Rosenkranz, Asger W.
  • Bucher, Jan
  • Mathiesen, Jette Katja
  • Nielsen, Tobias M.
  • Rosenkranz, Asger Wulff
  • Mathiesen, Jette K.
  • Pittkowski, Rebecca
  • Tsakoumis, Nikolaos E.
  • Johnsen, Rune E.
  • Lögdberg, Sara
  • Myrstad, Rune
  • Blekkan, Edd A.
  • Patanou, Eleni
  • Rytter, Erling
  • Dehghan, Roya
  • Holmen, Anders
  • Rønning, Magnus
  • Voronov, Alexey
  • Walmsley, John C.
  • Borg, Øyvind
  • Chen, De
OrganizationsLocationPeople

article

Structure-performance relationships on Co based Fischer – Tropsch synthesis catalysts: The more defect free the better

  • Tsakoumis, Nikolaos E.
  • Johnsen, Rune E.
  • Lögdberg, Sara
  • Myrstad, Rune
  • Blekkan, Edd A.
  • Patanou, Eleni
  • Beek, Wouter Van
  • Rytter, Erling
Abstract

Understanding and utilizing structure-performance relationships in catalytic nanomaterials is the epitome of catalysis science. Knowledge at the atomic level can potentially allow rational design of more selective and energy efficient catalytic materials. Fischer – Tropsch synthesis on cobalt is an example of a complicated system that operates in a narrow process regime, and the nature of the reaction product is governed by numerous parameters. On an industrial model catalyst, we have simplified the structure of the active, metallic nanoparticles into predominantly hexagonal close packed structure via the use of a Co2C precursor. By varying the final reduction temperature, we could mildly modify catalyst microstructural properties at the nanoparticle (NP) level. Catalytic materials, although with minimal structural differences, showed significantly different performance. Evidently there is a narrow window for complete utilization of the hexagonal close packed Co crystallites that lays between removal of lattice carbon, that remains from the Co2C precursor, and the initiation of stacking disorder, due to transition to the face centered cubic Co structure. Fischer – Tropsch synthesis performance indicators show that Co NPs with minimum number of crystal defects outperform catalysts with lattice defects, either due to the existence of lattice carbon or stacking faults. Therefore, catalyst preparation and activation procedures probably should be designed targeting defect free Co crystallites.

Topics
  • nanoparticle
  • impedance spectroscopy
  • Carbon
  • defect
  • cobalt
  • activation
  • stacking fault