People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Cerri, Isotta
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
Density Functional Theory (DFT) and Experimental Evidences of Metal–Support Interaction in Platinum Nanoparticles Supported on Nitrogen- and Sulfur-Doped Mesoporous Carbons: Synthesis, Activity, and Stability
Abstract
In this paper, we report a comprehensive investigation of Pt nanoparticles (NPs) deposition on nitrogen- and sulfur-doped or codoped mesoporous carbons (N-MC, S-MC, and N,S-MC) to develop active and durable oxygen reduction catalysts for fuel cells. N-MC, S-MC, and N,S-MC were prepared by employing mesoporous silica as hard template and suitable organic precursors. Pt NPs were deposited by solid-state reduction of platinum acetylacetonate under N2/H2 flow on the three different supports. Pt NPs resulted to be well-dispersed over the doped MC supports with size distributions (from 1.8 nm to 3.5 nm) that are dependent on the type of doping heteroatom (N, S, or N and S). The influence of nitrogen and/or sulfur incorporated into the carbon matrix on the nucleation and growth of Pt NPs was also rationalized based on density functional theory (DFT) simulations. They highlighted that both nitrogen and sulfur increase the interactions between Pt and carbon support, but the interaction decreases as the nitrogen an...