People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Abild-Pedersen, Frank
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2024Application of machine learning to discover new intermetallic catalysts for the hydrogen evolution and the oxygen reduction reactionscitations
- 2022Colloidal Platinum-Copper Nanocrystal Alloy Catalysts Surpass Platinum in Low-Temperature Propene Combustion.citations
- 2021Bimetallic effects on Zn-Cu electrocatalysts enhance activity and selectivity for the conversion of CO2 to COcitations
- 2021Guiding the Catalytic Properties of Copper for Electrochemical CO2 Reduction by Metal Atom Decoration.citations
- 2019Understanding Structure-Property Relationships of MoO3-Promoted Rh Catalysts for Syngas Conversion to Alcohols.citations
- 2017Rh-MnO Interface Sites Formed by Atomic Layer Deposition Promote Syngas Conversion to Higher Oxygenatescitations
- 2017Mechanistic insights into heterogeneous methane activationcitations
- 2015Surface Tension Effects on the Reactivity of Metal Nanoparticlescitations
- 2014Discovery of a Ni-Ga catalyst for carbon dioxide reduction to methanolcitations
- 2013Density functional theory studies of transition metal nanoparticles in catalysis
- 2012CO hydrogenation to methanol on Cu–Ni catalystscitations
- 2012CO hydrogenation to methanol on Cu–Ni catalysts:Theory and experimentcitations
- 2011On the behavior of Brønsted-Evans-Polanyi relations for transition metal oxidescitations
- 2009A CATALYST, A PROCESS FOR SELECTIVE HYDROGENATION OF ACETYLENE TO ETHYLENE AND A METHOD FOR THE MANUFACTURE OF THE CATALYST
- 2008Identification of non-precious metal alloy catalysts for selective hydrogenation of acetylenecitations
- 2004Atomic-scale imaging of carbon nanofibre growthcitations
Places of action
Organizations | Location | People |
---|
article
Rh-MnO Interface Sites Formed by Atomic Layer Deposition Promote Syngas Conversion to Higher Oxygenates
Abstract
<p>Rhodium (Rh) catalysts are among the major candidates for syngas conversion to higher oxygenates (C<sub>2+</sub>oxy), with manganese (Mn) as a commonly used promoter for enhancing the activity and selectivity toward C<sub>2+</sub>oxy. In this study, we use atomic layer deposition (ALD) to controllably modify Rh catalysts with MnO, by depositing manganese oxide as a support layer or an overlayer, in order to identify the function of the Mn promoter. We also compare the ALD-modified catalysts with those prepared by coimpregnation. An ultrathin MnO support layer shows the most effective enhancement for C<sub>2+</sub>oxy production. Transmission electron microscopy, temperature-programmed reduction, and diffuse reflectance infrared Fourier transform spectroscopy characterization indicates that formation of Rh-MnO interface sites is responsible for the observed activity and selectivity improvements, while ruling out Rh nanoparticle size and alloy or mixed oxide formation as significant contributors. MnO overlayers on Rh appear to suffer from poor stability upon CO adsorption and are less effective than a MnO support layer. Density functional theory (DFT) calculations show that MnO species on the Rh(111) surface lower the transition state energy for CO bond dissociation and stabilize the key transition state for C<sub>2+</sub>oxy synthesis more significantly than that for methane synthesis, leading to enhanced activity and C<sub>2+</sub>oxy selectivity.</p>