People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Damsgaard, Christian Danvad
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (28/28 displayed)
- 2024Using CoCu2Ga/SiO2 to identify stability-issues in ethanol-selective Co-Cu alloyed catalysts in carbon monoxide hydrogenationcitations
- 2024Using CoCu 2 Ga/SiO 2 to identify stability-issues in ethanol-selective Co-Cu alloyed catalysts in carbon monoxide hydrogenationcitations
- 2024Using CoCu$_2$Ga/SiO$_2$ to identify stability-issues in ethanol-selective Co-Cu alloyed catalysts in carbon monoxide hydrogenation
- 2024Stable mass-selected AuTiOx nanoparticles for CO oxidationcitations
- 2024Stable mass-selected AuTiO x nanoparticles for CO oxidationcitations
- 2023Ni 5-x Ga 3+x Catalyst for Selective CO 2 Hydrogenation to MeOH :Investigating the Activity at Ambient Pressure and Low Temperature with Microreactors
- 2023Ni5-xGa3+x Catalyst for Selective CO2 Hydrogenation to MeOH
- 2022Reversible Atomization and Nano-Clustering of Pt as a Strategy for Designing Ultra-Low-Metal-Loading Catalystscitations
- 2021Characterization of oxide-supported Cu by infrared measurements on adsorbed COcitations
- 2020Reduction and carburization of iron oxides for Fischer–Tropsch synthesiscitations
- 2019Evolution of intermetallic GaPd2/SiO2 catalyst and optimization for methanol synthesis at ambient pressurecitations
- 2018Scalable Synthesis of Carbon-Supported Platinum–Lanthanide and −Rare-Earth Alloys for Oxygen Reductioncitations
- 2016Influence of gas atmospheres and ceria on the stability of nanoporous gold studied by environmental electron microscopy and in situ ptychographycitations
- 2015Intermetallic GaPd2 Nanoparticles on SiO2 for Low-Pressure CO2 Hydrogenation to Methanolcitations
- 2015Intermetallic GaPd 2 Nanoparticles on SiO 2 for Low-Pressure CO 2 Hydrogenation to Methanol:Catalytic Performance and In Situ Characterizationcitations
- 2014In situ ETEM synthesis of NiGa alloy nanoparticles from nitrate salt solutioncitations
- 2014In situ observation of Cu-Ni alloy nanoparticle formation by X-ray diffraction, X-ray absorption spectroscopy, and transmission electron microscopy: Influence of Cu/Ni ratiocitations
- 2014Intermetallic compounds of Ni and Ga as catalysts for the synthesis of methanolcitations
- 2014Intermetallic compounds of Ni and Ga as catalysts for the synthesis of methanolcitations
- 2014Electron microscopy study of the deactivation of nickel based catalysts for bio oil hydrodeoxygenation
- 2013Optical coupling in the ETEM
- 2012Origin of low temperature deactivation of Ni5Ga3 nanoparticles as catalyst for methanol synthesis
- 2011In situ environmental transmission electron microscope investigation of NiGa nanoparticle synthesis
- 2009Interfacial, electrical, and spin-injection properties of epitaxial Co2MnGa grown on GaAs(100)citations
- 2008Hybrid Spintronic Structures With Magnetic Oxides and Heusler Alloyscitations
- 2006Spin injection from epitaxial Heusler alloy thin films into InGaAs/GaAs quantum wells
- 2005Fe-contacts on InAs(100) and InP(100) characterised by conversion electron Mössbauer spectroscopycitations
- 2005Spin injection between epitaxial Co2.4Mn1.6Ga and an InGaAs quantum wellcitations
Places of action
Organizations | Location | People |
---|
article
Intermetallic GaPd2 Nanoparticles on SiO2 for Low-Pressure CO2 Hydrogenation to Methanol
Abstract
A nanodispersed intermetallic GaPd<sub>2</sub>/SiO<sub>2</sub> catalyst is prepared by simple impregnation of industrially relevant high-surface-area SiO<sub>2</sub> with Pd and Ga nitrates, followed by drying, calcination, and reduction in hydrogen. The catalyst is tested for CO<sub>2</sub> hydrogenation to methanol at ambient pressure, revealing that the intrinsic activity of the GaPd<sub>2</sub>/SiO<sub>2</sub> is higher than that of the conventional Cu/ZnO/Al<sub>2</sub>O<sub>3</sub>, while the production of the undesired CO is lower. A combination of complementary in situ and ex situ techniques are used to investigate the GaPd<sub>2</sub>/SiO<sub>2</sub> catalyst. In situ X-ray diffraction and in situ extended X-ray absorption fine structure spectroscopy show that the GaPd<sub>2</sub> intermetallic phase is formed upon activation of the catalyst via reduction and remains stable during CO<sub>2</sub> hydrogenation. Identical location-transmission electron microscopy images acquired ex situ (i.e., micrographs of exactly the same catalyst area recorded at the different steps of activation and reaction procedure) show that nanoparticle size and dispersion are defined upon calcination with no significant changes observed after reduction and methanol synthesis. Similar conclusions can be drawn from electron diffraction patterns and images acquired using environmental TEM (ETEM), indicating that ETEM results are representative for the catalyst treated at ambient pressure. The chemical composition and the crystalline structure of the nanoparticles are identified by scanning TEM energy dispersive X-ray spectroscopy, selected area electron diffraction, and atomically resolved TEM images.