People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Sun, Zhaozong
Aarhus University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2023Steering carbon dioxide reduction toward C–C coupling using copper electrodes modified with porous molecular filmscitations
- 2022Can the CO 2 Reduction Reaction Be Improved on Cu:Selectivity and Intrinsic Activity of Functionalized Cu Surfacescitations
- 2022The cobalt oxidation state in preferential CO oxidation on CoO x /Pt(111) investigated by operando X-ray photoemission spectroscopycitations
- 2022The cobalt oxidation state in preferential CO oxidation on CoOx/Pt(111) investigated by operando X-ray photoemission spectroscopycitations
- 2022Can the CO2Reduction Reaction Be Improved on Cucitations
- 2021Nanoscale Chevrel-Phase Mo 6 S 8 Prepared by a Molecular Precursor Approach for Highly Efficient Electrocatalysis of the Hydrogen Evolution Reaction in Acidic Mediacitations
- 2021Nanoscale Chevrel-Phase Mo6S8Prepared by a Molecular Precursor Approach for Highly Efficient Electrocatalysis of the Hydrogen Evolution Reaction in Acidic Mediacitations
- 2021Nanoscale Chevrel Phase Mo6S8 Prepared by a Molecular Precursor Approach for Highly Efficient Electrocatalysis of the Hydrogen Evolution Reaction in Acidic Media
- 2021Nanoscale Chevrel Phase Mo6S8 Prepared by a Molecular Precursor Approach for Highly Efficient Electrocatalysis of the Hydrogen Evolution Reaction in Acidic Media
- 2020Cubes on a string:a series of linear coordination polymers with cubane-like nodes and dicarboxylate linkerscitations
- 2019Anisotropic iron-doping patterns in two-dimensional cobalt oxide nanoislands on Au(111)citations
- 2019Structural and electronic properties of Fe dopants in cobalt oxide nanoislands on Au(111)citations
- 2018Phase Transitions of Cobalt Oxide Bilayers on Au(111) and Pt(111):The Role of Edge Sites and Substrate Interactionscitations
- 2018Phase Transitions of Cobalt Oxide Bilayers on Au(111) and Pt(111)citations
- 2017Phase Transitions of Cobalt Oxide Bilayers on Au(111) and Pt(111): The Role of Edge Sites and Substrate Interactions.citations
Places of action
Organizations | Location | People |
---|
article
Can the CO2Reduction Reaction Be Improved on Cu
Abstract
<p>Cu is currently the most effective monometallic catalyst for producing valuable multicarbon-based (C<sub>2+</sub>) products, such as ethylene and ethanol, from the CO<sub>2</sub>reduction reaction (CO<sub>2</sub>RR). One approach to optimize the activity and selectivity of the metal Cu catalyst is to functionalize the Cu electrode with a molecular modifier. We investigate from a data standpoint whether any reported functionalized Cu catalyst improves the intrinsic activity and/or multicarbon product selectivity compared to the performance of bare Cu foil and the best single crystal Cu facets. Our analysis shows that the reported increases in activity are due to increased surface roughness and disappear once normalized with respect to electrochemical surface area. The intrinsic activity generally falls below that of the bare Cu foil reference, both for total and product-specific current, which we attribute to nonselective blocking of active sites by the modifier on the surface. Instead, an analysis of various polymer diffusion coefficients indicates that the modifier allows for easier diffusion of CO<sub>2</sub>compared to H<sub>2</sub>O to the surface, leading to greater selectivity for CO<sub>2</sub>RR and C<sub>2+</sub>products. As such, our analysis finds no catalyst for CO<sub>2</sub>RR that intrinsically outperforms bare Cu.</p>