People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Vreeswijk, Sophie H. Van
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
Combined in Situ X-ray Powder Diffractometry/Raman Spectroscopy of Iron Carbide and Carbon Species Evolution in Fe(-Na-S)/α-Al2O3Catalysts during Fischer-Tropsch Synthesis
Abstract
<p>A Na-S promoted Fe-based Fischer-Tropsch synthesis (FTS) catalyst converts a H2/CO gas mixture into hydrocarbons with enriched C2-C4 olefin content. Above 300 °C, the carbon-depositing Boudouard reaction competes with the FTS reaction for CO as reactant. By making use of a combined in situ X-ray powder diffractometry (XRPD)/Raman spectroscopy setup, the simultaneous evolution of the FexOy/α-Fe/FexC phases and various formed carbon species has been monitored at 340 °C and 10 bar. CO carburized, Na-S promoted and unpromoted Fe(-Na-S)/α-Al2O3 catalysts were investigated. The various Fe phases present were quantified with Rietveld quantitative phase analysis (R-QPA) from the in situ collected XRPD patterns. The observed D- A nd G-bands in the in situ Raman spectra were analyzed for their relative intensities, band widths, and positions and compared to reference carbon materials. It was found that amorphous carbon with C sp3 and C sp2 in chain-like ordering evolved toward carbon nanofiber-like structures during FTS. Na-S promotion and initial CO carburization at temperatures ≥340 °C led to an increased amount of cyclic sixfold C sp2 species. Preliminary carbon deposits present in the catalysts decreased the initial fast increase of the Raman band intensities, while Na-S promotion increased Raman band intensity growth after the initial fast increase period. The carbon species evolution was unaffected by the presence of specific Fe carbides or by carbide-to-carbide transitions. Na-S promotion aided in the reduction of Fe3O4 by (H2:)CO to carbon-depositing Fe carbides. The results obtained add to our further understanding on the role of Fe and carbon species during a high-temperature FTS reaction. </p>