People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Wallinder, Inger Odnevall
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (3/3 displayed)
- 2021Adsorption of bio-organic eco-corona molecules reduces the toxic response to metallic nanoparticles in Daphnia magnacitations
- 2020Cobalt nanoparticles trigger ferroptosis-like cell death (oxytosis) in neuronal cellscitations
- 2015Can Cobalt(II) and Chromium(III) Ions Released from Joint Prostheses Influence the Friction Coefficientcitations
Places of action
Organizations | Location | People |
---|
article
Can Cobalt(II) and Chromium(III) Ions Released from Joint Prostheses Influence the Friction Coefficient
Abstract
Cobalt chromium molybdenum alloys (CoCrMo) are commonly used as articulating components in joint prostheses. In this tribocorrosive environment, wear debris and metal ionic species are released and interact with proteins, possibly resulting in protein aggregation. This study aimed to investigate whether this could have an effect on the friction coefficient in a typical material couple, namely CoCrMo-on-polyethylene. It was confirmed that both Co(II) and Cr(III) ions, and their combination, at concentrations relevant for the metal release situation, resulted in protein aggregation and its concomitant precipitation, which increased the friction coefficient. Future studies should identify the clinical importance of these findings.