Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Malderen, Stijn Van

  • Google
  • 1
  • 7
  • 9

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Local Release of Strontium from Sputter-Deposited Coatings at Implants Increases the Strontium-to-Calcium Ratio in Peri-implant Bone9citations

Places of action

Chart of shared publication
Foss, Morten
1 / 17 shared
Christensen, Thorbjørn Erik Køppen
1 / 1 shared
Offermanns, Vincent
1 / 3 shared
Davidsen, Maiken Berglund
1 / 1 shared
Andersen, Ole Zoffmann
1 / 3 shared
Garrevoet, Jan
1 / 6 shared
Birkedal, Henrik
1 / 17 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Foss, Morten
  • Christensen, Thorbjørn Erik Køppen
  • Offermanns, Vincent
  • Davidsen, Maiken Berglund
  • Andersen, Ole Zoffmann
  • Garrevoet, Jan
  • Birkedal, Henrik
OrganizationsLocationPeople

article

Local Release of Strontium from Sputter-Deposited Coatings at Implants Increases the Strontium-to-Calcium Ratio in Peri-implant Bone

  • Foss, Morten
  • Christensen, Thorbjørn Erik Køppen
  • Malderen, Stijn Van
  • Offermanns, Vincent
  • Davidsen, Maiken Berglund
  • Andersen, Ole Zoffmann
  • Garrevoet, Jan
  • Birkedal, Henrik
Abstract

<p>It is well known that strontium (Sr) has a significant effect on peri-implant bone healing when administered systemically. Due to the risk of adverse effects of such treatments, new routes focusing on the local, sustained release of Sr from bone-implant contact surfaces have been explored, with success in in vivo experiments. However, the increase of Sr concentrations in the peri-implant bone has not been described in depth yet. Here, we show that a local, sustained Sr release from Ti-Sr-O physical vapor deposition (PVD) coatings by magnetron sputter coating increases the Sr/Ca ratio close to the implant in a rabbit model and that the Sr/Ca background level is reached approximately 500 μm from the implant.</p>

Topics
  • impedance spectroscopy
  • surface
  • experiment
  • physical vapor deposition
  • Strontium
  • Calcium
  • sputter coating