Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Xu, Yanan

  • Google
  • 2
  • 8
  • 113

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2024Unravelling the physicochemical and antimicrobial mechanisms of human serum albumin/tannic acid coatings for medical-grade polycaprolactone scaffolds4citations
  • 2020Antiviral and antibacterial nanostructured surfaces with excellent mechanical properties for hospital applications109citations

Places of action

Chart of shared publication
Juarez-Saldivar, Alfredo
1 / 1 shared
Bock, Nathalie
1 / 2 shared
Cometta, Silvia
1 / 2 shared
Donose, Bogdan C.
1 / 4 shared
Rakic, Aleksandar D.
1 / 1 shared
Hasan, Jafar
1 / 9 shared
Yarlagadda, Prasad Kdv
1 / 50 shared
Yarlagadda, Tejasri
1 / 1 shared
Chart of publication period
2024
2020

Co-Authors (by relevance)

  • Juarez-Saldivar, Alfredo
  • Bock, Nathalie
  • Cometta, Silvia
  • Donose, Bogdan C.
  • Rakic, Aleksandar D.
  • Hasan, Jafar
  • Yarlagadda, Prasad Kdv
  • Yarlagadda, Tejasri
OrganizationsLocationPeople

article

Antiviral and antibacterial nanostructured surfaces with excellent mechanical properties for hospital applications

  • Hasan, Jafar
  • Yarlagadda, Prasad Kdv
  • Yarlagadda, Tejasri
  • Xu, Yanan
Abstract

With the rise of bacterial and viral infections including the recent outbreak of coronavirus, the requirement for novel antimicrobial strategies is also rising with urgency. To solve this problem, we have used a wet etching technique to fabricate 23 nm wide nanostructures randomly aligned as ridges on aluminum (Al) 6063 alloy surfaces. The surfaces were etched for 0.5, 1, and 3 h. The surfaces were characterized using scanning electron microscopy, energy-dispersive X-ray spectroscopy, contact angle goniometry, nanoindentation and atomic force microscopy. Strains of the Gram negative bacteria Pseudomonas aeruginosa and the Gram positive bacteria Staphylococcus aureus were used to evaluate the bacterial attachment behavior. For the first time, common respiratory viruses, respiratory syncytial virus (RSV) and rhinovirus (RV), were investigated for antiviral activity on nanostructured surfaces. It was found that the etched Al surfaces were hydrophilic and the nanoscale roughness enhanced with the etching time with Rrms ranging from 69.9 to 995 nm. Both bacterial cells of P. aeruginosa and S. aureus were physically deformed and were nonviable upon attachment after 3 h on the etched Al 6063 surface. This nanoscale surface topography inactivated 92 and 87% of the attached P. aeruginosa and S. aureus cells, respectively. The recovery of infectious RSV was also reduced significantly within 2 h of exposure to the nanostructured surfaces compared to the smooth Al control surfaces. There was a 3–4 log10 reduction in the viability counts of rhinovirus after 24 h on the nanostructured surfaces. The nanostructured surfaces exhibited excellent durability as the surfaces sustained 1000 cycles of 2000 μN load without any damage. This is the first report that has shown the combined antibacterial and antiviral property of the nanostructured surface with excellent nanomechanical properties that could be potentially significant for use in hospital environments to stop the spread of infections arising from physical surfaces.

Topics
  • impedance spectroscopy
  • surface
  • scanning electron microscopy
  • atomic force microscopy
  • aluminium
  • nanoindentation
  • Energy-dispersive X-ray spectroscopy
  • durability
  • aligned
  • wet etching