People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Hampu, Nicholas
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (3/3 displayed)
- 2020Molecular Engineering of Nanostructures in Disordered Block Polymerscitations
- 2019Temporally Controlled Curing of Block Polymers in the Disordered State Using Thermally Stable Photoacid Generators for the Preparation of Nanoporous Membranescitations
- 2017Nanoporous Thermosets with Percolating Pores from Block Polymers Chemically Fixed above the Order-Disorder Transitioncitations
Places of action
Organizations | Location | People |
---|
article
Temporally Controlled Curing of Block Polymers in the Disordered State Using Thermally Stable Photoacid Generators for the Preparation of Nanoporous Membranes
Abstract
<p>A lamellar forming poly(styrene-stat-glycidyl methacrylate)-block-polylactide, P(S-s-GMA)-b-PLA, diblock polymer containing the photoacid generator 4-iodophenyldiphenylsulfonium triflate (IST) was heated above its order-disorder transition temperature, TODT, and subsequently irradiated with UV light to kinetically trap the disordered state by acid-catalyzed cross-linking through the reactive GMA units. We demonstrated that IST remained thermally stable over relevant cross-linking temperatures and times allowing for the independent control over both the thermally induced disordering process and the onset of cross-linking, in contrast to related thermal cross-linking agents. Post removal of the PLA component, the photocured samples displayed a high degree of nanoporosity across a broad cross-linking temperature range that extends to at least 75 °C above the TODT. In-situ photocuring during small-angle X-ray scattering revealed that the cross-linking reaction had a minimal effect on the domain structure. Finally, we demonstrated that highly selective ultrafiltration membranes could be fabricated by spin-coating a P(S-s-GMA)-b-PLA diblock polymer containing IST onto a commercial polysulfone support, irradiating with UV light in the disordered state, and removing the sacrificial PLA domains. </p>