People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Karjalainen, Erno
VTT Technical Research Centre of Finland
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2024Clay Composites by In Situ Polymerization of Ionic Liquid-Based Dispersions
- 2023Clay Composites by In Situ Polymerization of Ionic Liquid-Based Dispersions
- 2022Well-dispersed clay in photopolymerized poly(ionic liquid) matrixcitations
- 2018Tunable Ionic Control of Polymeric Films for Inkjet Based 3D Printingcitations
- 2018Tunable Ionic Control of Polymeric Films for Inkjet Based 3D Printing.citations
- 2017Advanced reactor engineering with 3D printing for the continuous-flow synthesis of silver nanoparticles.citations
- 2017Water-Dispersible Silica-Polyelectrolyte Nanocomposites Prepared via Acid-Triggered Polycondensation of Silicic Acid and Directed by Polycationscitations
- 2016Water-dispersible silica-polyelectrolyte nanocomposites prepared via acid-triggered polycondensation of silicic acid and directed by polycations.citations
- 2016Water-Dispersible Silica-Polyelectrolyte Nanocomposites Prepared via Acid-Triggered Polycondensation of Silicic Acid and Directed by Polycationscitations
- 2013Imidazolium-Based Poly(ionic liquid)s as New Alternatives for CO2 Capture.citations
- 2009Grafting of montmorillonite nano-clay with butyl acrylate and methyl methacrylate by atom transfer radical polymerization: Blends with poly(BuA-co-MMA).citations
- 2009Grafting of montmorillonite nano-clay with butyl acrylate and methyl methacrylate by atom transfer radical polymerizationcitations
Places of action
Organizations | Location | People |
---|
article
Clay Composites by In Situ Polymerization of Ionic Liquid-Based Dispersions
Abstract
Flexible composite materials were prepared by in situ copolymerization of ionic liquid like monomers─namely 1-vinyl-3-ethyl imidazolium bis(trifluoromethane)sulfonimide (M1) and 1-(2-acryloyloxyundecyl)-3-methylimidazolium bis(trifluoromethane)sulfonimide (M2) that were cross-linked with 1,1′-octane-1,8-diylbis(3-vinyl imidazolium) di[bis(trifluoromethane)sulfonimide] (CL). Mixtures of polymerizable ionic liquids were used to disperse organo-modified montmorillonite clay as a filler. Polymerization of the mixtures resulted in copolymer composites. The glass transition temperature of the composites could be tuned in the range of −2–127 °C by varying the ratio of the ionic liquid monomers M1 and M2, which is presented in the article for the first time along with its homopolymer. The mechanical properties were significantly enhanced by using a copolymer matrix instead of either of the respective homopolymers. The toughest M1–M2 copolymer composite exhibited a toughness of 5.3 ± 1.4 MPa, while the toughnesses of corresponding poly(M1) and poly(M2) films were 0.6 ± 0.2 and 0.5 ± 0.003 MPa, respectively. The composite could be filled uniformly with large amounts of montmorillonite clay. The copolymer matrix was able to take up large amounts of clay while still exhibiting mechanical properties that surpassed the unfilled matrix.