Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ekeocha, James

  • Google
  • 1
  • 8
  • 12

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Oligomeric Curing Activators Enable Conventional Sulfur-Vulcanized Rubbers to Self-Heal12citations

Places of action

Chart of shared publication
Haddleton, David M.
1 / 10 shared
Wemyss, Alan M.
1 / 7 shared
Bernal, M. Mar
1 / 2 shared
Marathianos, Arkadios
1 / 1 shared
Morishita, Yoshihiro
1 / 1 shared
Di Ronza, Raffaele
1 / 1 shared
Heeley, Ellen L.
1 / 17 shared
Wan, Chaoying
1 / 17 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Haddleton, David M.
  • Wemyss, Alan M.
  • Bernal, M. Mar
  • Marathianos, Arkadios
  • Morishita, Yoshihiro
  • Di Ronza, Raffaele
  • Heeley, Ellen L.
  • Wan, Chaoying
OrganizationsLocationPeople

article

Oligomeric Curing Activators Enable Conventional Sulfur-Vulcanized Rubbers to Self-Heal

  • Haddleton, David M.
  • Wemyss, Alan M.
  • Bernal, M. Mar
  • Ekeocha, James
  • Marathianos, Arkadios
  • Morishita, Yoshihiro
  • Di Ronza, Raffaele
  • Heeley, Ellen L.
  • Wan, Chaoying
Abstract

When introducing self-healing properties to elastomers, it is often difficult to balance their ability to recover properties after damage with a good mechanical strength prior to damage. We demonstrate that by replacing the activator system used in conventional accelerated vulcanization (CV) chemistry, from the traditional zinc oxide (ZnO) and stearic acid to a complex formed between ω-propenyl functional oligomers of poly(zinc methacrylate) (pZnMA/ZnO), the self-healing properties of vulcanized natural rubbers are enhanced while maintaining good tensile strengths. The pZnMA oligomers, as synthesized by catalytic chain transfer polymerization (CCTP), act as an activator for the sulfur curing system, while also forming an ionic network in the rubber. The addition of 20 phr of pZnMA/ZnO to a CV system resulted in a cured natural rubber with a tensile strength of 7.47 ± 0.64 MPa, which recovered 86.7% after self-healing at 80 °C for 2 h. Further addition of 40 phr of carbon black N234 unexpectedly enhanced the self-healing efficiency of these vulcanized rubbers to 92.2% under the same conditions and also improved the self-healing at room temperature. Finally, dynamic mechanical thermal analysis indicated that the natural rubber formulations containing pZnMA/ZnO showed improved wet traction but with higher rolling resistance to a standard formulation. These results point to an interesting direction for further research into the performance of self-healing composites in vehicle tire applications.

Topics
  • impedance spectroscopy
  • Carbon
  • zinc
  • strength
  • composite
  • thermal analysis
  • forming
  • tensile strength
  • rubber
  • curing
  • elastomer