People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Wan, Chaoying
University of Warwick
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (17/17 displayed)
- 2024Piezo-tribo-electric nanogenerator based on BCZT/MCNTs/PDMS piezoelectric composite for compressive energy harvestingcitations
- 2024High ferroelectric performance of poly (vinylidene difluoride-co-hexafluoropropylene) - based membranes enabled by electrospinning and multilayer lamination
- 2022Electron beam-mediated cross-linking of blown film-extruded biodegradable PGA/PBAT blends toward high toughness and low oxygen permeationcitations
- 2022Tailoring electromechanical properties of natural rubber vitrimers by cross-linkerscitations
- 2022Oligomeric Curing Activators Enable Conventional Sulfur-Vulcanized Rubbers to Self-Healcitations
- 2020Self-healing dielectric elastomers for damage-Tolerant actuation and energy harvestingcitations
- 2020Gas Barrier Polymer Nanocomposite Films Prepared by Graphene Oxide Encapsulated Polystyrene Microparticlescitations
- 2020Understanding the enhancement and temperature-dependency of the self-healing and electromechanical properties of dielectric elastomers containing mixed pendant polar groupscitations
- 2020Structure and dielectric properties of electroactive tetraaniline grafted non-polar elastomerscitations
- 2019Electrical dual-percolation in MWCNTs/SBS/PVDF based thermoplastic elastomer (TPE) composites and the effect of mechanical stretchingcitations
- 2018Stress-oscillation behaviour of semi-crystalline polymers: the case of poly(butylene succinate)citations
- 2018Intrinsically Tuning the Electromechanical Properties of Elastomeric Dielectricscitations
- 2018Intrinsically Tuning the Electromechanical Properties of Elastomeric Dielectrics:A Chemistry Perspectivecitations
- 2018Intrinsic tuning of poly (styrene-butadiene-styrene) (SBS) based self-healing dielectric elastomer actuators with enhanced electromechanical propertiescitations
- 2017Functionalization of BaTiO3 nanoparticles with electron insulating and conducting organophosphazene-based hybrid materialscitations
- 2016Functionalisation of MWCNTs with poly(lauryl acrylate) polymerised by Cu(0)-mediated and RAFT methodscitations
- 2014Photoinduced sequence-control via one pot living radical polymerization of acrylatescitations
Places of action
Organizations | Location | People |
---|
article
Oligomeric Curing Activators Enable Conventional Sulfur-Vulcanized Rubbers to Self-Heal
Abstract
When introducing self-healing properties to elastomers, it is often difficult to balance their ability to recover properties after damage with a good mechanical strength prior to damage. We demonstrate that by replacing the activator system used in conventional accelerated vulcanization (CV) chemistry, from the traditional zinc oxide (ZnO) and stearic acid to a complex formed between ω-propenyl functional oligomers of poly(zinc methacrylate) (pZnMA/ZnO), the self-healing properties of vulcanized natural rubbers are enhanced while maintaining good tensile strengths. The pZnMA oligomers, as synthesized by catalytic chain transfer polymerization (CCTP), act as an activator for the sulfur curing system, while also forming an ionic network in the rubber. The addition of 20 phr of pZnMA/ZnO to a CV system resulted in a cured natural rubber with a tensile strength of 7.47 ± 0.64 MPa, which recovered 86.7% after self-healing at 80 °C for 2 h. Further addition of 40 phr of carbon black N234 unexpectedly enhanced the self-healing efficiency of these vulcanized rubbers to 92.2% under the same conditions and also improved the self-healing at room temperature. Finally, dynamic mechanical thermal analysis indicated that the natural rubber formulations containing pZnMA/ZnO showed improved wet traction but with higher rolling resistance to a standard formulation. These results point to an interesting direction for further research into the performance of self-healing composites in vehicle tire applications.