Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Vu, Doan

  • Google
  • 1
  • 5
  • 5

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Reassessing the Significance of Reduced Aggregation and Crystallinity of Naphthalene Diimide-Based Copolymer Acceptors in All-Polymer Solar Cells5citations

Places of action

Chart of shared publication
Gann, Eliot
1 / 22 shared
Jevric, Martyn
1 / 4 shared
Wang, Chao
1 / 14 shared
Thomsen, Lars
1 / 20 shared
Mcneill, Christopher R.
1 / 15 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Gann, Eliot
  • Jevric, Martyn
  • Wang, Chao
  • Thomsen, Lars
  • Mcneill, Christopher R.
OrganizationsLocationPeople

article

Reassessing the Significance of Reduced Aggregation and Crystallinity of Naphthalene Diimide-Based Copolymer Acceptors in All-Polymer Solar Cells

  • Gann, Eliot
  • Jevric, Martyn
  • Vu, Doan
  • Wang, Chao
  • Thomsen, Lars
  • Mcneill, Christopher R.
Abstract

<p>Synthesizing copolymer acceptors based on a mix of three co-monomers is a facile and effective strategy to control the aggregation and crystallinity of semiconducting polymers which has been exploited to improve the photovoltaic performance of all-polymer solar cells (all-PSCs). Applying this strategy to the well-studied electron-transporting polymer acceptor PNDI2OD-T2, different amounts of 3-octylthiophene (OT) are used to partially replace the bithiophene (T2) unit, resulting in three copolymer acceptors PNDI-OTx where x = 5, 10, or 15%. Another polymer, namely PNDI2OD-C8T2, consisting of naphthalene diimide (NDI) polymerized with 3-octyl-2,2′-bithiophene (C8T2) is also synthesized for comparison. It is found that the solution aggregation and thin-film crystallinity of PNDI-OTx are systematically tuned by varying x, evidenced by temperature-dependent UV-vis and grazing incidence wide-angle X-ray scattering measurements. PNDI2OD-C8T2 is also found to have reduced solution aggregation and thin-film crystallinity relative to PNDI2OD-T2. However, the photovoltaic performance of all-PSCs based on J71:PNDI-OTx and J71:PNDI2OD-C8T2 blends are much lower than that of the reference J71:PNDI2OD-T2 system. Extensive morphological studies indicate that reduced aggregation and crystallinity do not guarantee a more favorable blend morphology, with coarser phase separation found in J71:PNDI-OTx and J71:PNDI2OD-C8T2 blends compared to J71:PNDI2OD-T2 blends. Furthermore, the OT-modified copolymers with reduced crystallinity are found to have reduced electron mobilities. The results here suggest that reduced aggregation and less crystallinity of random copolymer acceptors do not always produce favorable morphology in polymer/polymer blends and do not guarantee for improvement in the photovoltaic performance. </p>

Topics
  • impedance spectroscopy
  • phase
  • laser emission spectroscopy
  • random
  • copolymer
  • crystallinity
  • wide-angle X-ray scattering
  • polymer blend
  • random copolymer