People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Tas, Cuneyt Erdinc
Technological University of the Shannon: Midlands Midwest
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2023Extending the Shelf Life of Bananas with Cinnamaldehyde-Impregnated Halloysite/Polypropylene Nanocomposite Filmscitations
- 2023Flexible waterborne polyurethane nanocomposite foams incorporated with halloysites as fresh-keeping packaging inserts for fresh fruitscitations
- 2023Effect of size-graded and polydopamine-coated halloysite nanotubes on fundamental properties of low-density polyethylene nanocomposite film
- 2023Effect of the Preparation Methodology of Polydopamine-Containing Systems over Light-to-Thermal Energy Conversion Performancecitations
- 2022Combining S-DADPS monomer and halloysite nanotube for fabrication superior nanofiltration membranecitations
- 2021Thermally buffering polyethylene/halloysite/phase change material nanocomposite packaging films for cold storage of foodscitations
- 2021Photothermal Waterborne Polydopamine/Polyurethanes with Light-to-Heat Conversion Propertiescitations
- 2020Purification and Sorting of Halloysite Nanotubes into Homogeneous, Agglomeration-Free Fractions by Polydopamine Functionalizationcitations
- 2020Blends of highly branched and linear poly(arylene ether sulfone)scitations
- 2019Insecticide-releasing LLDPE films as greenhouse cover materialscitations
- 2017Halloysite Nanotubes/Polyethylene Nanocomposites for Active Food Packaging Materials with Ethylene Scavenging and Gas Barrier Propertiescitations
Places of action
Organizations | Location | People |
---|
article
Photothermal Waterborne Polydopamine/Polyurethanes with Light-to-Heat Conversion Properties
Abstract
<p>A polydopamine-polyurethane (PDA-WPU)-based polymeric matrix with efficient light-to-heat conversion properties that can initiate light-activated temperature elevations is presented. The polymerization of dopamine monomer in a pre-synthesized aqueous polyurethane dispersion resulted in hybrid polyurethane-polydopamine particles via the coating of discrete waterborne polyurethane (WPU) particles with photothermal polydopamine. The resulting polydopamine-polyurethane (PDA-WPU) dispersions presented a unimodal particle-size distribution and particle sizes that increased as a function of the initial dopamine concentration and polymerization time. Films cast from PDA-WPU dispersions were black-colored and presented a homogeneous morphology with contact angles that decreased with increasing PDA content. While the thermal decomposition behavior and thermal conductivity values of hybrid PDA-WPU films were improved relative to neat WPU films, the glass transition temperatures remained unaffected and the films presented acceptable mechanical properties. PDA-WPU films prepared with the highest amount of polydopamine reached 105.8 °C when irradiated with solar light at 3 sun for 20 min. Five min of irradiation with NIR laser light at 800 mW/cm2 elevated the temperatures of the PDA-WPU films from room temperature to 138.6 °C. Moreover, PDA-WPU dispersions were molded in the form of a container to investigate their potential in solar-driven water-evaporation applications. The hybrid PDA-WPU polymer matrix prepared via a facile postsynthesis modification of WPU dispersions with polydopamine synergistically possesses the features of both components and presents strong photothermal activity along with its easy-to-apply, nanoparticle-free, and environmentally friendly nature; thus, this matrix can be viewed as a promising candidate for a wide range of photo-driven applications.</p>