Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Scatto, M.

  • Google
  • 5
  • 39
  • 69

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (5/5 displayed)

  • 2021Additive Manufactured Scaffolds for Bone Tissue Engineering: Physical Characterization of Thermoplastic Composites with Functional Fillers28citations
  • 2021Additive Manufactured Scaffolds for Bone Tissue Engineering: Physical Characterization of Thermoplastic Composites with Functional Fillers28citations
  • 2021Valorization of Biomass Gasification Char as Filler in Polymers and Comparison with Carbon Black13citations
  • 2009Study of the compounding process parameters for morphology control of LDPE/layered silicate nanocompositescitations
  • 2008In situ Rheo-SALS experiments on LDPE nanocomposites: A preliminary studycitations

Places of action

Chart of shared publication
Uriszar-Aldaca, I. C.
1 / 1 shared
Grizzuti, N.
2 / 3 shared
Sinha, Ravi
1 / 4 shared
Wendelbo, R.
2 / 2 shared
Mota, Carlos
1 / 27 shared
Cámara-Torres, María
1 / 1 shared
Perez, S.
2 / 3 shared
Ciccarelli, L.
2 / 2 shared
Moroni, Lorenzo
1 / 43 shared
Vanzanella, V.
2 / 2 shared
Gambardella, A.
2 / 9 shared
Calore, Andrea Roberto
1 / 4 shared
Matanza, A.
2 / 2 shared
Patelli, A.
2 / 4 shared
Sisani, M.
2 / 2 shared
Harings, J.
2 / 2 shared
Villanueva, S.
2 / 2 shared
Sanchez, A.
2 / 4 shared
Mota, C.
1 / 24 shared
Moroni, L.
1 / 10 shared
Camara-Torres, M.
1 / 1 shared
R., Calore A.
1 / 1 shared
Sinha, R.
1 / 4 shared
C., Uriszar-Aldaca I.
1 / 1 shared
Benedetti, V.
1 / 2 shared
Baratieri, M.
1 / 2 shared
Riello, P.
1 / 13 shared
Ciardelli, F.
1 / 6 shared
Costa, G.
1 / 8 shared
Conzatti, L.
2 / 11 shared
Bertoldo, M.
1 / 19 shared
Passaglia, E.
1 / 17 shared
Sterner, M.
1 / 1 shared
Coiai, S.
2 / 17 shared
Andreotti, L.
2 / 2 shared
Azzurri, Fiorenza
1 / 6 shared
Cavallo, Dario
1 / 44 shared
Stagnaro, P.
1 / 9 shared
Repetto, Luca
1 / 7 shared
Chart of publication period
2021
2009
2008

Co-Authors (by relevance)

  • Uriszar-Aldaca, I. C.
  • Grizzuti, N.
  • Sinha, Ravi
  • Wendelbo, R.
  • Mota, Carlos
  • Cámara-Torres, María
  • Perez, S.
  • Ciccarelli, L.
  • Moroni, Lorenzo
  • Vanzanella, V.
  • Gambardella, A.
  • Calore, Andrea Roberto
  • Matanza, A.
  • Patelli, A.
  • Sisani, M.
  • Harings, J.
  • Villanueva, S.
  • Sanchez, A.
  • Mota, C.
  • Moroni, L.
  • Camara-Torres, M.
  • R., Calore A.
  • Sinha, R.
  • C., Uriszar-Aldaca I.
  • Benedetti, V.
  • Baratieri, M.
  • Riello, P.
  • Ciardelli, F.
  • Costa, G.
  • Conzatti, L.
  • Bertoldo, M.
  • Passaglia, E.
  • Sterner, M.
  • Coiai, S.
  • Andreotti, L.
  • Azzurri, Fiorenza
  • Cavallo, Dario
  • Stagnaro, P.
  • Repetto, Luca
OrganizationsLocationPeople

article

Additive Manufactured Scaffolds for Bone Tissue Engineering: Physical Characterization of Thermoplastic Composites with Functional Fillers

  • Uriszar-Aldaca, I. C.
  • Grizzuti, N.
  • Sinha, Ravi
  • Wendelbo, R.
  • Mota, Carlos
  • Cámara-Torres, María
  • Perez, S.
  • Ciccarelli, L.
  • Scatto, M.
  • Moroni, Lorenzo
  • Vanzanella, V.
  • Gambardella, A.
  • Calore, Andrea Roberto
  • Matanza, A.
  • Patelli, A.
  • Sisani, M.
  • Harings, J.
  • Villanueva, S.
  • Sanchez, A.
Abstract

Thermoplastic polymer-filler composites are excellent materials for bone tissue engineering (TE) scaffolds, combining the functionality of fillers with suitable load-bearing ability, biodegradability, and additive manufacturing (AM) compatibility of the polymer. Two key determinants of their utility are their rheological behavior in the molten state, determining AM processability and their mechanical load-bearing properties. We report here the characterization of both these physical properties for four bone TE relevant composite formulations with poly(ethylene oxide terephthalate)/poly(butylene terephthalate (PEOT/PBT) as a base polymer, which is often used to fabricate TE scaffolds. The fillers used were reduced graphene oxide (rGO), hydroxyapatite (HA), gentamicin intercalated in zirconium phosphate (ZrP-GTM) and ciprofloxacin intercalated in MgAl layered double hydroxide (MgAl-CFX). The rheological assessment showed that generally the viscous behavior dominated the elastic behavior (G" > G') for the studied composites, at empirically determined extrusion temperatures. Coupled rheological-thermal characterization of ZrP-GTM and HA composites showed that the fillers increased the solidification temperatures of the polymer melts during cooling. Both these findings have implications for the required extrusion temperatures and bonding between layers. Mechanical tests showed that the fillers generally not only made the polymer stiffer but more brittle in proportion to the filler fractions. Furthermore, the elastic moduli of scaffolds did not directly correlate with the corresponding bulk material properties, implying composite-specific AM processing effects on the mechanical properties. Finally, we show computational models to predict multimaterial scaffold elastic moduli using measured single material scaffold and bulk moduli. The reported characterizations are essential for assessing the AM processability and ultimately the suitability of the manufactured scaffolds for the envisioned bone regeneration application.

Topics
  • impedance spectroscopy
  • melt
  • extrusion
  • zirconium
  • layered
  • composite
  • thermoplastic
  • additive manufacturing
  • solidification