Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Dallinger, Alexander

  • Google
  • 1
  • 2
  • 42

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2021Multiresponsive Soft Actuators Based on a Thermoresponsive Hydrogel and Embedded Laser-Induced Graphene42citations

Places of action

Chart of shared publication
Coclite, Anna Maria
1 / 19 shared
Kindlhofer, Paul
1 / 1 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Coclite, Anna Maria
  • Kindlhofer, Paul
OrganizationsLocationPeople

article

Multiresponsive Soft Actuators Based on a Thermoresponsive Hydrogel and Embedded Laser-Induced Graphene

  • Dallinger, Alexander
  • Coclite, Anna Maria
  • Kindlhofer, Paul
Abstract

<p>The method of converting insulating polymers into conducting 3D porous graphene structures, so-called laser-induced graphene (LIG) with a commercially available CO2 laser engraving system in an ambient atmosphere, resulted in several applications in sensing, actuation, and energy. In this paper, we demonstrate a combination of LIG and a smart hydrogel (poly(N-vinylcaprolactam) - pNVCL) for multiresponsive actuation in a humid environment. Initiated chemical vapor deposition (iCVD) was used to deposit a thin layer of the smart hydrogel onto a matrix of poly(dimethylsiloxane) (PDMS) and embedded LIG tracks. An intriguing property of smart hydrogels, such as pNVCL, is that the change of an external stimulus (temperature, pH, magnetic/electric fields) induces a reversible phase transition from a swollen to a collapsed state. While the active smart hydrogel layer had a thickness of only 300 nm (compared to the 500 times thicker actuator matrix), it was possible to induce a reversible bending of over 30° in the humid environment triggered by Joule heating. The properties of each material were investigated by means of scanning electron microscopy (SEM), Raman spectroscopy, tensile testing, and ellipsometry. The actuation performances of single-responsive versions were investigated by creating a thermoresponsive PDMS/LIG actuator and a humidity-responsive PDMS/pNVCL actuator. These results were used to tune the properties of the multiresponsive PDMS/LIG/pNVCL actuator. Furthermore, its self-sensing capabilities were investigated. By getting a feedback from the piezoresistive change of the PMDS/LIG composite, the bending angle could be tracked by measuring the change in resistance. To highlight the possibilities of the processing techniques and the combination of materials, a demonstrator in the shape of an octopus with four independently controllable arms was developed. </p>

Topics
  • porous
  • impedance spectroscopy
  • polymer
  • phase
  • scanning electron microscopy
  • composite
  • phase transition
  • ellipsometry
  • Raman spectroscopy
  • chemical vapor deposition