Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Rarity, John G.

  • Google
  • 1
  • 11
  • 4

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Conformal CVD-grown MoS2 on three-dimensional woodpile photonic crystals for photonic bandgap engineering4citations

Places of action

Chart of shared publication
Huang, Chung-Che
1 / 38 shared
Chen, Lifeng
1 / 2 shared
Morgan, Katrina Anne
1 / 14 shared
Taverne, Mike P. C.
1 / 2 shared
Hewak, Daniel W.
1 / 80 shared
Chen, Yu-Shao Jacky
1 / 1 shared
Awachi, Habib
1 / 1 shared
Rezaie, Daniel
1 / 1 shared
Palakkool, Nadira Meethale
1 / 1 shared
Zheng, Xu
1 / 3 shared
Ho, Y.-L. Daniel
1 / 1 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Huang, Chung-Che
  • Chen, Lifeng
  • Morgan, Katrina Anne
  • Taverne, Mike P. C.
  • Hewak, Daniel W.
  • Chen, Yu-Shao Jacky
  • Awachi, Habib
  • Rezaie, Daniel
  • Palakkool, Nadira Meethale
  • Zheng, Xu
  • Ho, Y.-L. Daniel
OrganizationsLocationPeople

article

Conformal CVD-grown MoS2 on three-dimensional woodpile photonic crystals for photonic bandgap engineering

  • Huang, Chung-Che
  • Chen, Lifeng
  • Morgan, Katrina Anne
  • Taverne, Mike P. C.
  • Hewak, Daniel W.
  • Chen, Yu-Shao Jacky
  • Rarity, John G.
  • Awachi, Habib
  • Rezaie, Daniel
  • Palakkool, Nadira Meethale
  • Zheng, Xu
  • Ho, Y.-L. Daniel
Abstract

To achieve the modification of photonic band structures and realize the dispersion control toward functional photonic devices, composites of photonic crystal templates with high-refractive-index material are fabricated. A two-step process is used: 3D polymeric woodpile templates are fabricated by a direct laser writing method followed by chemical vapor deposition of MoS<sub>2</sub>. We observed red-shifts of partial bandgaps at the near-infrared region when the thickness of deposited MoS<sub>2</sub> films increases. A ∼10 nm red-shift of fundamental and high-order bandgap is measured after each 1 nm MoS<sub>2</sub> thin film deposition and confirmed by simulations and optical measurements using an angle-resolved Fourier imaging spectroscopy system.

Topics
  • impedance spectroscopy
  • dispersion
  • thin film
  • simulation
  • composite
  • chemical vapor deposition
  • band structure