Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Shmeliov, Aleksey

  • Google
  • 5
  • 36
  • 147

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (5/5 displayed)

  • 2022Investigation of process by-products during the Selective Laser Melting of Ti6AL4V powder36citations
  • 2019Silanization of silica nanoparticles and their processing as nanostructured micro-raspberry powders - a route to control the mechanical properties of isoprene rubber composites8citations
  • 2018Colloidal core-satellite supraparticles via preprogramed burst of nanostructured micro-raspberry particles4citations
  • 2018Structural transformation of layered double hydroxides: An in situ TEM analysis88citations
  • 2018Percolating metallic structures templated on laser-deposited carbon nanofoams derived from graphene oxide: applications in humidity sensing11citations

Places of action

Chart of shared publication
Dowling, Denis P.
1 / 24 shared
Keaveney, Shane
1 / 2 shared
Nicolosi, Valeria
5 / 40 shared
Jaeger, Raimund
1 / 5 shared
Stauch, Claudia
2 / 3 shared
Malebennur, Sriharish
1 / 1 shared
Luxenhofer, Robert
2 / 23 shared
Ballweg, Thomas
2 / 3 shared
Stiller, Stefan
1 / 1 shared
Beiner, Mario
1 / 6 shared
Mandel, Karl
3 / 13 shared
Haas, Karl-Heinz
1 / 5 shared
Wötzel, Jacqueline
1 / 1 shared
Hobbs, Christopher
2 / 4 shared
Jaskaniec, Sonia
1 / 4 shared
Mourad, Maurice C. D.
1 / 1 shared
Downing, Clive
1 / 2 shared
Opelt, Konrad
1 / 2 shared
Güth, Konrad
1 / 6 shared
Mccarthy, Eoin K.
1 / 2 shared
Víctor-Román, Sandra
1 / 3 shared
Benito, Ana M.
1 / 30 shared
Peláez-Fernández, Mario
1 / 5 shared
Meloni, Manuela
1 / 5 shared
Salvage, Jonathan P.
1 / 11 shared
Maser, Wolfgang K.
1 / 32 shared
Dalton, Alan B.
1 / 15 shared
Nufer, Sebastian
1 / 2 shared
Schellenberger, Pascale
1 / 1 shared
Fantanas, Dimitrios
1 / 2 shared
Ogilvie, Sean P.
1 / 7 shared
King, Alice A. K.
1 / 6 shared
Arenal, Raúl
1 / 35 shared
Brunton, Adam
1 / 3 shared
Winterauer, Dominik J.
1 / 1 shared
Large, Matthew J.
1 / 7 shared
Chart of publication period
2022
2019
2018

Co-Authors (by relevance)

  • Dowling, Denis P.
  • Keaveney, Shane
  • Nicolosi, Valeria
  • Jaeger, Raimund
  • Stauch, Claudia
  • Malebennur, Sriharish
  • Luxenhofer, Robert
  • Ballweg, Thomas
  • Stiller, Stefan
  • Beiner, Mario
  • Mandel, Karl
  • Haas, Karl-Heinz
  • Wötzel, Jacqueline
  • Hobbs, Christopher
  • Jaskaniec, Sonia
  • Mourad, Maurice C. D.
  • Downing, Clive
  • Opelt, Konrad
  • Güth, Konrad
  • Mccarthy, Eoin K.
  • Víctor-Román, Sandra
  • Benito, Ana M.
  • Peláez-Fernández, Mario
  • Meloni, Manuela
  • Salvage, Jonathan P.
  • Maser, Wolfgang K.
  • Dalton, Alan B.
  • Nufer, Sebastian
  • Schellenberger, Pascale
  • Fantanas, Dimitrios
  • Ogilvie, Sean P.
  • King, Alice A. K.
  • Arenal, Raúl
  • Brunton, Adam
  • Winterauer, Dominik J.
  • Large, Matthew J.
OrganizationsLocationPeople

article

Percolating metallic structures templated on laser-deposited carbon nanofoams derived from graphene oxide: applications in humidity sensing

  • Víctor-Román, Sandra
  • Benito, Ana M.
  • Peláez-Fernández, Mario
  • Meloni, Manuela
  • Salvage, Jonathan P.
  • Maser, Wolfgang K.
  • Dalton, Alan B.
  • Nufer, Sebastian
  • Schellenberger, Pascale
  • Shmeliov, Aleksey
  • Fantanas, Dimitrios
  • Nicolosi, Valeria
  • Ogilvie, Sean P.
  • King, Alice A. K.
  • Arenal, Raúl
  • Brunton, Adam
  • Winterauer, Dominik J.
  • Large, Matthew J.
Abstract

Carbon nanofoam (CNF) is a low-density, high-surface-area material formed by aggregation of amorphous carbon nanoparticles into porous nanostructures. We report the use of a pulsed infrared laser to prepare CNF from a graphene oxide (GO) target material. Electron microscopy shows that the films consist of dendritic strings that form web-like three-dimensional structures. The conductivity of these structures can be modified by using the CNF as a nanostructured scaffold for gold nanoparticles deposited by sputter coating, controllably increasing the conductivity by up to 4 orders of magnitude. The ability to measure the conductivity of the porous structures allows electrochemical measurements in the environment. Upon decreasing humidity, the pristine CNF exhibits an increase in resistance with a quick response and recovery time. By contrast, the gold-sputtered CNF showed a decrease in resistance, indicating modification of the doping mechanism due to water adsorption. The sensitivity to humidity is eliminated at the percolation threshold of the metal on the CNF.

Topics
  • nanoparticle
  • Deposition
  • porous
  • density
  • impedance spectroscopy
  • surface
  • amorphous
  • Carbon
  • scanning electron microscopy
  • gold
  • electron microscopy
  • sputter coating