People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kolb, Ute
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (21/21 displayed)
- 2024Microstructure Characterization and Mechanical Properties of Polymer‐Derived (HfₓTa₁₋ₓ)C/SiC Ceramic Prepared upon Field‐Assisted Sintering Technique/Spark Plasma Sintering
- 2024Microstructure Characterization and Mechanical Properties of Polymer‐Derived (Hf<sub><i>x</i></sub>Ta<sub>1−<i>x</i></sub>)C/SiC Ceramic Prepared upon Field‐Assisted Sintering Technique/Spark Plasma Sinteringcitations
- 2023Synthesis and Structure Evolution in Metal Carbazole Diphosphonates Followed by Electron Diffractioncitations
- 2022Crystal structure determination of a new LaPO4 phase in a multicomponent glass ceramic via 3D electron diffractioncitations
- 2021Electrochemical reduction and oxidation of Ruddlesden–Popper-type La2NiO3F2 within fluoride-ion batteriescitations
- 20193D Electron Diffraction: The Nanocrystallography Revolutioncitations
- 2018Highly stable and porous porphyrin-based zirconium and hafnium phosphonates - electron crystallography as an important tool for structure elucidationcitations
- 2018From Single Molecules to Nanostructured Functional Materialscitations
- 2017Snapshots of calcium carbonate Formation - a step by step analysiscitations
- 2016Hierachical Ni@Fe2O3 superparticles through epitaxial growth of gamma-Fe2O3 nanorods on in situ formed Ni nanoplatescitations
- 2015Structural insights into<i>M</i><sub>2</sub>O–Al<sub>2</sub>O<sub>3</sub>–WO<sub>3</sub>(<i>M</i>= Na, K) system by electron diffraction tomographycitations
- 2015Crystalline Non‐Equilibrium Phase of a Cobalt(II) Complex with Tridentate Ligandscitations
- 2015Structural insights into M2O–Al2O3–WO3 (M = Na, K) system by electron diffraction tomographycitations
- 2014Rational assembly and dual functionalization of Au@MnO heteroparticles on TiO2 nanowirescitations
- 2014Atomic structure solution of the complex quasicrystal approximant Al77Rh15Ru8 from electron diffraction datacitations
- 2013In situ high pressure high temperature experiments in multi-anvil assemblies with bixbyite-type $In_{2}O_{3}$ and synthesis of corundum-type and orthorhombic $In_{2}O_{3}$ polymorphscitations
- 2013Graphene-type sheets of Nb1-xWxS2citations
- 2011Hydrogen peroxide sensors for cellular imaging based on horse radish peroxidase reconstituted on polymer-functionalized TiO2 nanorodscitations
- 2009Electron diffraction, X-ray powder diffraction and pair-distribution-function analyses to determine the crystal structures of Pigment Yellow 213, C<sub>23</sub>H<sub>21</sub>N<sub>5</sub>O<sub>9</sub>citations
- 2007Solid-state pyrolysis of polyphenylene-metal complexes:A facile approach toward carbon nanoparticlescitations
- 2005Uniaxial alignment of poly cyclic aromatic hydrocarbons by solution processingcitations
Places of action
Organizations | Location | People |
---|
article
From Single Molecules to Nanostructured Functional Materials
Abstract
Multicomponent nanostructures containing purely organic or inorganic as well as hybrid organic–inorganic components connected through a solid interface are, unlike conventional spherical particles, able to combine different or even incompatible properties within a single entity. They are multifunctional and resemble molecular amphiphiles, like surfactants or block copolymers, which makes them attractive for the self-assembly of complex structures, drug delivery, bioimaging, or catalysis. We have synthesized Pd@FexO heterodimer nanoparticles (NPs) to fabricate a macroporous, hydrophobic, magnetically active, three-dimensional (3D), and template-free hybrid foam capable of repeatedly separating oil contaminants from water. The Pd domains in the Pd@FexO heterodimers act as nanocatalysts for the hydrosilylation of polyhydrosiloxane and tetravinylsilane, while the FexO component confers magnetic properties to the final functional material. Pd@FexO heterodimers were synthesized by heterogeneous nucleation and growth of the iron oxide domain onto presynthesized Pd NPs at high temperatures in solution. The morphology, structure, and magnetic properties of the as-synthesized heterodimers were characterized by transmission electron microscopy (TEM), X-ray diffraction, Mössbauer spectroscopy, and a superconducting quantum interference device. The epitaxial growth of the FexO domain onto Pd was confirmed by high-resolution TEM. A potential application of the 3D hydrophobic magnetic foam was exploited by demonstrating its ability to soak oil beneath a water layer, envisioning its use in oil sampling during oil prospection drilling, or to remove oil films after oil spills.