Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kocabas, Coskun

  • Google
  • 9
  • 31
  • 390

University of Manchester

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (9/9 displayed)

  • 2024Synergistic Improvement in the Thermal Conductivity of Hybrid Boron Nitride Nanotube/Nanosheet Epoxy Composites6citations
  • 2020Multifunctional Biocomposites Based on Polyhydroxyalkanoate and Graphene/Carbon Nanofiber Hybrids for Electrical and Thermal Applications59citations
  • 2019Fourier transform plasmon resonance spectrometer using nanoslit-nanowire pair9citations
  • 2019Fourier transform plasmon resonance spectrometer using nanoslit-nanowire pair9citations
  • 2019Ultra-lightweight Chemical Vapor Deposition grown multilayered graphene coatings on paper separator as interlayer in lithium-sulfur batteries25citations
  • 2018NLL-Assisted Multilayer Graphene Patterning16citations
  • 2018Electrically switchable metadevices via graphene133citations
  • 2018Electrically switchable metadevices via graphene133citations
  • 2018Electrically switchable metadevices via graphene.citations

Places of action

Chart of shared publication
Bissett, Mark A.
2 / 20 shared
Steiner, Pietro
2 / 2 shared
Kinloch, Ian A.
2 / 59 shared
Mohanraman, Rajeshkumar
1 / 1 shared
Cataldi, Pietro
1 / 13 shared
Raine, Thomas
1 / 3 shared
Papageorgiou, Dimitrios G.
1 / 60 shared
Young, Robert J.
1 / 67 shared
Lin, Kailing
1 / 1 shared
Yakar, Ozan
2 / 2 shared
Ashirov, Timur
2 / 2 shared
Uulu, Doolos Aibek
2 / 2 shared
Öztoprak, Nahit
1 / 2 shared
Polat, Nahit
1 / 2 shared
Balci, Sinan
3 / 3 shared
Demir-Cakan, Rezan
1 / 11 shared
Salihoglu, Omer
1 / 1 shared
Cengiz, Elif Ceylan
1 / 1 shared
Ozturk, Osman
1 / 2 shared
Pavlov, Ihor
1 / 2 shared
Ilday, F. Ömer
1 / 1 shared
Deminskyi, Petro
1 / 7 shared
Kovalska, Evgeniya
1 / 3 shared
Baldycheva, Anna
1 / 2 shared
Karademir, Ertugrul
2 / 2 shared
Balci, Osman
2 / 4 shared
Özbay, Ekmel
2 / 2 shared
Polat, Emre O.
2 / 2 shared
Kakenov, Nurbek
2 / 2 shared
Caglayan, Humeyra
2 / 19 shared
Cakmakyapan, Semih
2 / 2 shared
Chart of publication period
2024
2020
2019
2018

Co-Authors (by relevance)

  • Bissett, Mark A.
  • Steiner, Pietro
  • Kinloch, Ian A.
  • Mohanraman, Rajeshkumar
  • Cataldi, Pietro
  • Raine, Thomas
  • Papageorgiou, Dimitrios G.
  • Young, Robert J.
  • Lin, Kailing
  • Yakar, Ozan
  • Ashirov, Timur
  • Uulu, Doolos Aibek
  • Öztoprak, Nahit
  • Polat, Nahit
  • Balci, Sinan
  • Demir-Cakan, Rezan
  • Salihoglu, Omer
  • Cengiz, Elif Ceylan
  • Ozturk, Osman
  • Pavlov, Ihor
  • Ilday, F. Ömer
  • Deminskyi, Petro
  • Kovalska, Evgeniya
  • Baldycheva, Anna
  • Karademir, Ertugrul
  • Balci, Osman
  • Özbay, Ekmel
  • Polat, Emre O.
  • Kakenov, Nurbek
  • Caglayan, Humeyra
  • Cakmakyapan, Semih
OrganizationsLocationPeople

article

Synergistic Improvement in the Thermal Conductivity of Hybrid Boron Nitride Nanotube/Nanosheet Epoxy Composites

  • Kocabas, Coskun
  • Bissett, Mark A.
  • Steiner, Pietro
  • Kinloch, Ian A.
  • Mohanraman, Rajeshkumar
Abstract

Epoxy composites with excellent thermal properties are highly promising for thermal management applications in modern electronic devices. In this work, we report the enhancement of the thermal conductivity of two different nanocomposites, using epoxy resins LY564 (epoxy 1) and LY5052 (epoxy 2), by incorporating multiwalled boron nitride nanotubes (BNNT) and boron nitride nanosheets (BNNS) as fillers. The synergistic interaction between the 1D BNNT and 2D BNNS allows for improved thermal conductivity via several different mechanisms. The highest thermal conductivity was measured at a loading of 1/30 wt % of BNNT/BNNS, resulting in values of 2.6 and 3.4 Wm -1 K -1 , respectively, for each epoxy matrix. This improvement is attributed to the formation of a three-dimensional heat flow path formed through intercalation of the nanotubes between the BNNS. The thermal conductivity of the epoxy 1 and 2 nanocomposites improved by 940 and 1500%, respectively, making them suitable as thermal interface materials in electronic applications requiring electrical resistivity.

Topics
  • nanocomposite
  • impedance spectroscopy
  • resistivity
  • nanotube
  • nitride
  • Boron
  • resin
  • thermal conductivity