People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Krekeler, Tobias
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (19/19 displayed)
- 2023Effect of Gd solutes on the micromechanical response of twinning and detwinning in Mgcitations
- 2023Wafer-Scale Fabrication of Hierarchically Porous Silicon and Silica Glass by Active Nanoparticle-Assisted Chemical Etching and Pseudomorphic Thermal Oxidationcitations
- 2023Magnetron Sputter Grown AlN Nanostructures with Giant Piezoelectric Response toward Energy Generationcitations
- 2023Magnetron Sputter Deposition of Nanostructured AlN Thin Filmscitations
- 2022Strengthening Engineered Nanocrystal Three-Dimensional Superlattices via Ligand Conformation and Reactivitycitations
- 2021Defects and plasticity in ultrastrong supercrystalline nanocompositescitations
- 2021Simultaneous enhancement of actuation strain and mechanical strength of nanoporous Ni–Mn actuatorscitations
- 2020Giant electrochemical actuation in a nanoporous silicon-polypyrrole hybrid materialcitations
- 2019Hierarchical supercrystalline nanocomposites through the self-assembly of organically-modified ceramic nanoparticlescitations
- 2019Hierarchical supercrystalline nanocomposites through the self-assembly of organically-modified ceramic nanoparticles
- 2019Hierarchical supercrystalline nanocomposites through the self-assembly of organically-modified ceramic nanoparticlescitations
- 2019Alumina-doped zirconia submicro-particles : synthesis, thermal stability, and microstructural characterizationcitations
- 2019Synthesis and thermal stability of ZrO2@SiO2 core-shell submicron particlescitations
- 2019Alumina-Doped Zirconia Submicro-Particles: Synthesis, Thermal Stability, and Microstructural Characterizationcitations
- 2019Modulating the Mechanical Properties of Supercrystalline Nanocomposite Materials via Solvent–Ligand Interactionscitations
- 2018Photonic materials for high-temperature applications: synthesis and characterization by X-ray ptychographic tomography
- 2017Semiordered hierarchical metallic network for fast and large charge-induced straincitations
- 2017Exceptionally strong, stiff and hard hybrid material based on an elastomer and isotropically shaped ceramic nanoparticlescitations
- 2017Highly porous α-Al 2 O 3 ceramics obtained by sintering atomic layer deposited inverse opals
Places of action
Organizations | Location | People |
---|
article
Magnetron Sputter Grown AlN Nanostructures with Giant Piezoelectric Response toward Energy Generation
Abstract
Piezoelectric III-N semiconductor nanostructures are of increasing interest to be used for sensor technologies and energy harvesting. Within this group of materials, AlN is known for the largest bulk piezoelectric constant, but piezoelectric properties of AlN nanostructures are not well studied. In the current work, AlN nanostructures are fabricated by reactive magnetron sputter deposition at normal and glancing angle orientations on Si substrates covered by a conductive TiN film. Ag nanoparticles are used to facilitate nucleation of the nanostructures, which are found to have a bud-like shape consisting of individual pillars/lamellae. These pillars exhibit a wurtzite-like hexagonal lattice and preferential growth direction along the c-axis. Piezoresponse force microscopy is used to characterize the properties of the nanostructures. Giant values of the piezoresponse coefficient are measured, reaching up to 6 times higher values compared to AlN bulk and thin films. The obtained results create a basis for optimization of the fabrication parameters enabling tuning of the AlN piezoelectric properties and further development of the technology toward the formation of large-area nanoscale matrixes for energy generation.