People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Bissett, Mark A.
University of Manchester
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (20/20 displayed)
- 2024Synergistic Improvement in the Thermal Conductivity of Hybrid Boron Nitride Nanotube/Nanosheet Epoxy Compositescitations
- 2024High-performance hybrid glass fibre epoxy composites reinforced with amine functionalised graphene oxide for structural applicationscitations
- 2024Structural Health Monitoring of Scarf Bonded Repaired Glass/Epoxy Laminates Interleaved with Carbon Non-woven Veilcitations
- 2023Tribology of Copper Metal Matrix Composites Reinforced with Fluorinated Graphene Oxide Nanosheets: Implications for Solid Lubricants in Mechanical Switchescitations
- 2023Novel techniques for characterising graphene nanoplatelets using Raman spectroscopy and machine learningcitations
- 2022Joule heating and mechanical properties of epoxy/graphene based aerogel compositecitations
- 2021Effect of graphene nanoplatelets on the mechanical and gas barrier properties of woven carbon fibre/epoxy compositescitations
- 2021Fabrication and Mechanical Performance of Graphene Nanoplatelet/Glass Fiber Reinforced Polymer Hybrid Composites
- 2020Sustainable, high barrier polyaleuritate/nanocellulose biocompositescitations
- 2020Multifunctional Biocomposites Based on Polyhydroxyalkanoate and Graphene/Carbon Nanofiber Hybrids for Electrical and Thermal Applicationscitations
- 2018Anodic dissolution growth of metal-organic framework HKUST-1 monitored:Via in situ electrochemical atomic force microscopy
- 2018Anodic dissolution growth of metal-organic framework HKUST-1 monitored via in situ electrochemical atomic force microscopycitations
- 2018Anodic dissolution growth of metal-organic framework HKUST-1 monitored via in situ electrochemical atomic force microscopycitations
- 2017Hydrogen Evolution at Liquid|Liquid Interfaces Catalysed by 2D Materialscitations
- 2016Metal-organic framework templated electrodeposition of functional gold nanostructurescitations
- 2016Asymmetric MoS2-graphene-metal sandwiches: Preparation, characterization and applicationcitations
- 2015Tunable doping of graphene nanoribbon arrays by chemical functionalizationcitations
- 2015Synthesis of Lateral Size-Controlled Monolayer 1H-MoS2@Oleylamine as Supercapacitor Electrodes.citations
- 2012Effect of domain boundaries on the Raman spectra of mechanically strained graphenecitations
- 2011Transition from single to multi-walled carbon nanotubes grown by inductively coupled plasma enhanced chemical vapor depositioncitations
Places of action
Organizations | Location | People |
---|
article
Tribology of Copper Metal Matrix Composites Reinforced with Fluorinated Graphene Oxide Nanosheets: Implications for Solid Lubricants in Mechanical Switches
Abstract
The potential for the use of copper coatings on steel switching mechanisms is abundant owing to the high conductivities and corrosion resistance that they impart on the engineered assemblies. However, applications of these coatings on such moving parts are limited due to their poor tribological properties; tendencies to generate high friction and susceptibility to degradative wear. In this study, we have fabricated a fluorinated graphene oxide-copper metal matrix composite (FGO-CMMC) on an AISI 52100 bearing steel substrate by a simple electrodeposition process in water. The FGO-CMMC coatings exhibited excellent lubrication performance under pin-on-disk (PoD) tribological sliding at 1N load, which reduced CoF by 63 and 69%, compared to the GO-CMMC and pure copper coatings that were also prepared. Furthermore, FGO-CMMC achieved low friction and low wear at higher sliding loads. The lubrication enhancement of the FGO-CMMCs is attributed to the tribochemical reaction of FGO with the AISI 52100 steel counterface initiated by the sliding load. The formation of an asymmetric tribofilm structure on the sliding track is critical; the performance of the FGO/Cu tribofilm formed in the track is boosted by the continued fluorination of the counterface surface during PoD sliding, passivating the tribosystem from adhesion-driven breakdown. The FGO-CMMC and GO-CMMC coatings also provide increased corrosion protection reaching 94.2 and 91.6% compared to the bare steel substrate, allowing for the preservation of the long-term low-friction performance of the coating. Other influences include the improved interlaminar shear strength of the FGO-containing composite. The excellent lubrication performance of the copper matrix composite coatings facilitated by FGO incorporation makes it a promising solid lubricant candidate for use in mechanical engineering applications.