Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Jonkman, Harry

  • Google
  • 1
  • 4
  • 1

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Nanoscale Networks of Metal Oxides by Polymer Imprinting and Templating for Future Adaptable Electronics1citations

Places of action

Chart of shared publication
Berg, Alexandra I.
1 / 3 shared
Loos, Katja U.
1 / 56 shared
Noheda, Beatriz
1 / 41 shared
Portale, Giuseppe, A.
1 / 57 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Berg, Alexandra I.
  • Loos, Katja U.
  • Noheda, Beatriz
  • Portale, Giuseppe, A.
OrganizationsLocationPeople

article

Nanoscale Networks of Metal Oxides by Polymer Imprinting and Templating for Future Adaptable Electronics

  • Berg, Alexandra I.
  • Jonkman, Harry
  • Loos, Katja U.
  • Noheda, Beatriz
  • Portale, Giuseppe, A.
Abstract

<p>While network formation is prevalent in nature, networks are generally not expected in inorganic structures. Exceptions are those cases in which surface states become important, such as nanoparticles. However, even in these cases, the morphology of these networks is difficult to control and they show a large degree of disorder. In this work, we show that highly ordered and interconnected nanoscale networks of functional metal oxides can be fabricated by a combination of polymer imprinting and polymer templating through solution processable methods. We report the fabrication of a number of functional oxide networks (i.e., BiFeO3, SrTiO3, La0.7Ca0.3MnO3, and HfO2) from solution, showing that all the oxide materials tried so far are able to follow the self-assembled network morphology dictated by the polymer structure. These networks were characterized for the overall structure by scanning electron microscopy and atomic force microscopy (AFM). Grazing incidence small angle X-ray scattering showed a good imprint quality on the mm2 scale for the combined networks, which is challenging given that multiple processing steps were involved during the fabrication. The material stoichiometries were investigated by X-ray photoemission spectroscopy and the crystal phases by grazing incidence wide angle X-ray scattering. When electronic functionality is anticipated, the networks behave as expected: conducting AFM on the La0.7Ca0.3MnO3 networks confirmed the conductive character of this composition; and piezoresponse force microscopy of the BiFeO3 network is consistent with the presence of ferroelectric behavior. These nanoscale networks show promise for future applications in adaptable electronics, such as neuromorphic computing or brain-inspired information processing.</p>

Topics
  • nanoparticle
  • impedance spectroscopy
  • surface
  • polymer
  • phase
  • scanning electron microscopy
  • atomic force microscopy
  • small angle x-ray scattering