Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Sharma, Vipul

  • Google
  • 5
  • 15
  • 156

University of Turku

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (5/5 displayed)

  • 2022Fractal-like Hierarchical CuO Nano/Microstructures for Large-Surface-to-Volume-Ratio Dip Catalysts5citations
  • 2022Integrated stretchable pneumatic strain gauges for electronics-free soft robots28citations
  • 2021Copper oxide microtufts on natural fractals for efficient water harvesting25citations
  • 2020Plant-Based Biodegradable Capacitive Tactile Pressure Sensor Using Flexible and Transparent Leaf Skeletons as Electrodes and Flower Petal as Dielectric Layer85citations
  • 2017Au Nanoparticle Aggregates Assembled on 3D Mirror-like Configuration Using Canna generalis Leaves for SERS Applications13citations

Places of action

Chart of shared publication
Ali-Löytty, Harri
2 / 44 shared
Parihar, Vijay Singh
1 / 6 shared
Yiannacou, Kyriacos
4 / 6 shared
Kellomäki, Minna
1 / 31 shared
Ukale, Dattatraya
1 / 1 shared
Lahtonen, Kimmo
2 / 38 shared
Sariola, Veikko
4 / 6 shared
Vihinen, Jorma
1 / 8 shared
Lampinen, Vilma
1 / 1 shared
Pihlajamäki, Mika
1 / 2 shared
Koivikko, Anastasia
3 / 3 shared
Elsayes, Ahmed Mohamed Abdelgawad
1 / 1 shared
Rasheed, Anum
1 / 1 shared
Balaji, Ramachandran
1 / 2 shared
Krishnan, Venkata
1 / 4 shared
Chart of publication period
2022
2021
2020
2017

Co-Authors (by relevance)

  • Ali-Löytty, Harri
  • Parihar, Vijay Singh
  • Yiannacou, Kyriacos
  • Kellomäki, Minna
  • Ukale, Dattatraya
  • Lahtonen, Kimmo
  • Sariola, Veikko
  • Vihinen, Jorma
  • Lampinen, Vilma
  • Pihlajamäki, Mika
  • Koivikko, Anastasia
  • Elsayes, Ahmed Mohamed Abdelgawad
  • Rasheed, Anum
  • Balaji, Ramachandran
  • Krishnan, Venkata
OrganizationsLocationPeople

article

Fractal-like Hierarchical CuO Nano/Microstructures for Large-Surface-to-Volume-Ratio Dip Catalysts

  • Ali-Löytty, Harri
  • Parihar, Vijay Singh
  • Yiannacou, Kyriacos
  • Kellomäki, Minna
  • Ukale, Dattatraya
  • Lahtonen, Kimmo
  • Sariola, Veikko
  • Sharma, Vipul
  • Vihinen, Jorma
Abstract

Dip catalysts are attracting interest in both academia and industry for catalyzing important chemical reactions. These provide excellent stability, better recoverability, recyclability, and easy scale-up. Using the unique microstructures of leaf skeletons, we present a fractal-like hierarchical surface that can be used as a versatile and efficient dip catalyst. Copper oxide microcactuses with nanoscalar features were fabricated onto the Bauhinia racemosa leaf skeletons via a combination of physical vapor deposition, electroplating, and chemical oxidation methods. The coated leaf skeletons have a very high surface area, and the three-dimensional (3D) morphology allows the reactants to encounter the catalytic sites efficiently and move around the reaction mixture swiftly. The fabricated bioinspired leaf skeleton-based dip catalyst was characterized and demonstrated to be very efficient for alcohol dehydrogenation reaction, examined under different experimental conditions. A ceramic 3D-printed catalyst holder was designed to hold the catalysts to avoid any damage caused by the magnetic bars during the reactions. The performance is determined using the reaction yields, and the efficiencies are correlated with microcactus-like structures composed of CuO and the 3D fractal-like shape provided by the leaf skeleton. This strategy can be applied to fabricate other dip catalysts using different materials and designs, suitable for catalyzing numerous other chemical reactions. ; peerReviewed

Topics
  • impedance spectroscopy
  • microstructure
  • morphology
  • surface
  • physical vapor deposition
  • copper
  • ceramic
  • alcohol