Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Gajjela, Rsr

  • Google
  • 4
  • 24
  • 53

ASML (Netherlands)

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2022Control of morphology and substrate etching in InAs/InP droplet epitaxy quantum dots for single and entangled photon emitters12citations
  • 2022Study of Size, Shape, and Etch pit formation in InAs/InP Droplet Epitaxy Quantum Dots9citations
  • 2021Structural and compositional analysis of (InGa)(AsSb)/GaAs/GaP Stranski–Krastanov quantum dots18citations
  • 2019High‐Density Sb2Te3 Nanopillars Arrays by Templated, Bottom‐Up MOCVD Growth14citations

Places of action

Chart of shared publication
Heffernan, Jon
1 / 2 shared
Koenraad, Pm Paul
3 / 12 shared
Sala, Elisa Maddalena
1 / 3 shared
Pryor, Craig E.
1 / 2 shared
Stevenson, R. Mark
1 / 2 shared
Venrooij, Niels R. S. Van
1 / 1 shared
Skiba-Szymanska, Joanna
1 / 2 shared
Shields, Andrew J.
1 / 4 shared
Sala, Em
1 / 1 shared
Douglas, Jo
1 / 9 shared
Moody, Mp
1 / 32 shared
Hendriks, Arthur L.
1 / 1 shared
Steindl, Petr
1 / 2 shared
Bagot, Paul A. J.
1 / 15 shared
Klenovský, Petr
1 / 1 shared
Bimberg, Dieter
1 / 7 shared
Lamperti, Alessio
1 / 4 shared
Nobili, Luca G.
1 / 1 shared
Longo, Massimo
1 / 11 shared
Cecchini, Raimondo
1 / 9 shared
Lazzarini, Laura
1 / 5 shared
Martella, Christian
1 / 6 shared
Wiemer, Claudia
1 / 7 shared
Nasi, Lucia
1 / 5 shared
Chart of publication period
2022
2021
2019

Co-Authors (by relevance)

  • Heffernan, Jon
  • Koenraad, Pm Paul
  • Sala, Elisa Maddalena
  • Pryor, Craig E.
  • Stevenson, R. Mark
  • Venrooij, Niels R. S. Van
  • Skiba-Szymanska, Joanna
  • Shields, Andrew J.
  • Sala, Em
  • Douglas, Jo
  • Moody, Mp
  • Hendriks, Arthur L.
  • Steindl, Petr
  • Bagot, Paul A. J.
  • Klenovský, Petr
  • Bimberg, Dieter
  • Lamperti, Alessio
  • Nobili, Luca G.
  • Longo, Massimo
  • Cecchini, Raimondo
  • Lazzarini, Laura
  • Martella, Christian
  • Wiemer, Claudia
  • Nasi, Lucia
OrganizationsLocationPeople

article

Control of morphology and substrate etching in InAs/InP droplet epitaxy quantum dots for single and entangled photon emitters

  • Heffernan, Jon
  • Koenraad, Pm Paul
  • Gajjela, Rsr
  • Sala, Elisa Maddalena
Abstract

We present a detailed atomic-resolution study of morphology and substrate etching mechanism in InAs/InP droplet epitaxy quantum dots (QDs) grown by metal–organic vapor phase epitaxy via cross-sectional scanning tunneling microscopy (X-STM). Two different etching processes are observed depending on the crystallization temperature: local drilling and long-range etching. In local drilling occurring at temperatures of ≤500 °C, the In droplet locally liquefies the InP underneath and the P atoms can easily diffuse out of the droplet to the edges. During crystallization, the As atoms diffuse into the droplet and crystallize at the solid–liquid interface, forming an InAs etch pit underneath the QD. In long-range etching, occurring at higher temperatures of >500 °C, the InP layer is destabilized and the In atoms from the surroundings migrate toward the droplet. The P atoms can easily escape from the surface into the vacuum, forming trenches around the QD. We show for the first time the formation of trenches and long-range etching in InAs/InP QDs with atomic resolution. Both etching processes can be suppressed by growing a thin layer of InGaAs prior to the droplet deposition. The QD composition is estimated by finite element modeling in combination with X-STM. The change in the morphology of QDs due to etching can strongly influence the fine structure splitting. Therefore, the current atomic-resolution study sheds light on the morphology and etching behavior as a function of crystallization temperature and provides a valuable insight into the formation of InAs/InP droplet epitaxy QDs which have potential applications in quantum information technologies.

Topics
  • Deposition
  • impedance spectroscopy
  • surface
  • phase
  • etching
  • forming
  • crystallization
  • quantum dot
  • scanning tunneling microscopy
  • crystallization temperature