People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Baert, Kitty
Vrije Universiteit Brussel
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (23/23 displayed)
- 2024Early stages of liquid-metal corrosion on pre-oxidized surfaces of austenitic stainless steel 316L exposed to static Pb-Bi eutectic at 400 °C
- 2023DBD plasma-assisted coating of metal alkoxides on sulfur powder for Li–S batteriescitations
- 2023Identification of carbon‐containing phases in electrodeposited hard Fe–C coatings with intentionally codeposited carbon
- 2023Identification of carbon-containing phases in electrodeposited hard Fe–C coatings with intentionally codeposited carbon
- 2022Use of nanoscale carbon layers on Ag-based gas diffusion electrodes to promote CO productioncitations
- 2022Unravelling the chemisorption mechanism of epoxy-amine coatings on Zr-based converted galvanized steel by combined static XPS/ToF-SIMS approachcitations
- 2022Anti-infective DNase I coatings on polydopamine functionalized titanium surfaces by alternating current electrophoretic depositioncitations
- 2022Albumin Protein Adsorption on CoCrMo Implant Alloycitations
- 2022Influence of thermal oxide layers on the hydrogen transport through the surface of SAE 1010 steelcitations
- 2022Influence of Thermal Oxide Layers on the Hydrogen Transport through the Surface of SAE 1010 Steelcitations
- 2022Revisiting the surface characterization of plasma-modified polymerscitations
- 2021Role of phosphate, calcium species and hydrogen peroxide on albumin protein adsorption on surface oxide of Ti6Al4V alloycitations
- 2021The mechanism of thermal oxide film formation on low Cr martensitic stainless steel and its behavior in fluoride-based pickling solution in conversion treatmentcitations
- 2021Photodeposited IrO2 on TiO2 support as a catalyst for oxygen evolution reactioncitations
- 2021A combined XPS/ToF-SIMS approach for the 3D compositional characterization of Zr-based conversion of galvanized steelcitations
- 2019Molybdate-phosphate conversion coatings to protect steel in a simulated concrete pore solutioncitations
- 2018Selective reduction of nitrobenzene to aniline over electrocatalysts based on nitrogen-doped carbons containing non-noble metalscitations
- 2018Selective reduction of nitrobenzene to aniline over electrocatalysts based on nitrogen-doped carbons containing non-noble metalscitations
- 2018Carbon-supported iron complexes as electrocatalysts for the cogeneration of hydroxylamine and electricity in a NO-H2 fuel cellcitations
- 2018Carbon-supported iron complexes as electrocatalysts for the cogeneration of hydroxylamine and electricity in a NO-H-2 fuel cell:A combined electrochemical and density functional theory studycitations
- 2017Development of an Electrochemical Procedure for Monitoring Hydrogen Sorption/Desorption in Steelcitations
- 2015XPS and mu-Raman study of nanosecond-laser processing of poly(dimethylsiloxane) (PDMS)citations
- 2015fs- and ns-laser processing of polydimethylsiloxane (PDMS) elastomer: Comparative studycitations
Places of action
Organizations | Location | People |
---|
article
Use of nanoscale carbon layers on Ag-based gas diffusion electrodes to promote CO production
Abstract
A promising strategy for the inhibition of the hydrogen evolution reaction along with the stabilization of the electrocatalyst in electrochemical CO2 reduction cells involves the application of a nanoscale amorphous carbon layer on top of the active catalyst layer in a gas diffusion electrode. Without modifying the chemical nature of the electrocatalyst itself, these amorphous carbon layers lead to the stabilization of the electrocatalyst, and a significant improvement with respect to the inhibition of the hydrogen evolution reaction was also obtained. The faradaic efficiencies of hydrogen could be reduced from 31.4 to 2.1% after 1 h of electrolysis with a 5 nm thick carbon layer. Furthermore, the impact of the carbon layer thickness (5–30 nm) on this inhibiting effect was investigated. We determined an optimal thickness of 15 nm where the hydrogen evolution reaction was inhibited and a decent stability was obtained. Next, a thickness of 15 nm was selected for durability measurements. Interestingly, these durability measurements revealed the beneficial impact of the carbon layer already after 6 h by suppressing the hydrogen evolution such that an increase of only 37.9% exists compared to 56.9% without the use of an additional carbon layer, which is an improvement of 150%. Since carbon is only applied afterward, it reveals its great potential in terms of electrocatalysis in general.