Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Cruces, E.

  • Google
  • 2
  • 9
  • 30

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2022Copper/Silver Bimetallic Nanoparticles Supported on Aluminosilicate Geomaterials as Antibacterial Agents30citations
  • 2022Copper/Silver Bimetallic Nanoparticles Supported on Aluminosilicate Geomaterials as Antibacterial Agentscitations

Places of action

Chart of shared publication
Bolan, N.
2 / 2 shared
Montory, J.
2 / 2 shared
Rubio, M. A.
2 / 2 shared
Perreault, F.
2 / 2 shared
Cubillos, V.
2 / 2 shared
Manquián-Cerda, K.
2 / 2 shared
Arancibia-Miranda, N.
2 / 2 shared
Azócar, M. I.
2 / 4 shared
Sarkar, B.
1 / 5 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Bolan, N.
  • Montory, J.
  • Rubio, M. A.
  • Perreault, F.
  • Cubillos, V.
  • Manquián-Cerda, K.
  • Arancibia-Miranda, N.
  • Azócar, M. I.
  • Sarkar, B.
OrganizationsLocationPeople

article

Copper/Silver Bimetallic Nanoparticles Supported on Aluminosilicate Geomaterials as Antibacterial Agents

  • Bolan, N.
  • Montory, J.
  • Rubio, M. A.
  • Perreault, F.
  • Cruces, E.
  • Cubillos, V.
  • Manquián-Cerda, K.
  • Arancibia-Miranda, N.
  • Azócar, M. I.
Abstract

This study aims to understand how properties of modified aluminosilicate geomaterials influence the antibacterial performance of nanocomposites when prepared with bimetallic nanoparticles (NPs). Copper/silver (Cu/Ag) bimetallic NPs were synthesized in the presence of imogolite (Imo), montmorillonite (Mtt), or zeolite (Zeo) using a simple one-pot method and characterized for their crystal phases, micro- and nanomorphologies, particle size, elemental composition, and electrophoretic mobility. The antibacterial activity was evaluated through minimum inhibition concentration assays of NPs and nanocomposites for Gram (-) Escherichia coli and Gram (+) Staphylococcus aureus bacteria. Deposition of metallic Cu0, Ag0, and cuprite NPs was confirmed in Zeo_Cu/Ag and Imo_Cu/Ag nanocomposites, whereas only Cu0 and Ag0 were identified in Mtt_Cu/Ag. The bimetallic NPs were more uniformly distributed on Zeo and Mtt than Imo. Particle sizes of 28.1 ± 5.0, 9.4 ± 2.3, 10.1 ± 1.7, and 12 ± 1.3 nm were determined for Cu/Ag NPs, Imo_Cu/Ag, Mtt_Cu/Ag, and Zeo_Cu/Ag, respectively. The release rate of Cu and Ag ions from Zeo_Cu/Ag was higher than those of pristine Cu/Ag NPs and the other two nanocomposites. The antimicrobial action of bimetallic NPs and nanocomposites was dose-dependent in relation to the concentration of concerned materials and their stability in the medium. The physicochemical characteristics of Zeo resulted in a homogeneous distribution and low oxidation and agglomeration of Cu/Ag NPs, consequently increasing the antibacterial activity. Results of this study highlight the benefits of using a geomaterial support to achieve high antibacterial activity of bimetallic NPs, which could help reduce the consumption of pure Cu/Ag salts in NP-based antibacterial applications.

Topics
  • nanoparticle
  • Deposition
  • nanocomposite
  • silver
  • phase
  • mobility
  • copper