Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Seaton, Nicholas C. A.

  • Google
  • 2
  • 9
  • 32

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2021Diffusion-Driven Exfoliation of Magneto-Optical Garnet Nanosheets6citations
  • 2013Quasi-phase-matched Faraday rotation in semiconductor waveguides with a magnetooptic cladding for monolithically integrated optical isolators26citations

Places of action

Chart of shared publication
Myers, Jason C.
1 / 5 shared
Stadler, Bethanie J. H.
2 / 11 shared
Schwarz, Andrew
1 / 1 shared
Block, Andrew D.
1 / 1 shared
Sung, Sang-Yeob
1 / 1 shared
Hutchings, David
1 / 5 shared
Holmes, B. M.
1 / 3 shared
Zhang, Cui
1 / 2 shared
Dulal, Prabesh
1 / 3 shared
Chart of publication period
2021
2013

Co-Authors (by relevance)

  • Myers, Jason C.
  • Stadler, Bethanie J. H.
  • Schwarz, Andrew
  • Block, Andrew D.
  • Sung, Sang-Yeob
  • Hutchings, David
  • Holmes, B. M.
  • Zhang, Cui
  • Dulal, Prabesh
OrganizationsLocationPeople

article

Diffusion-Driven Exfoliation of Magneto-Optical Garnet Nanosheets

  • Myers, Jason C.
  • Seaton, Nicholas C. A.
  • Stadler, Bethanie J. H.
  • Schwarz, Andrew
Abstract

<p>Rare-earth iron garnets are instrumental in the development of integrated nonreciprocal passive devices such as isolators and circulators in silicon photonics. Unfortunately, monolithic integration of garnet on-chip requires annealing temperatures much higher than the thermal budget of a semiconductor foundry. Here, we report the mechanical exfoliation of large area (0.2 mm × 0.2 mm) nanosheets of a high-gyrotropy cerium-doped terbium iron garnet (CeTbIG) enabled by a strain-enhanced vacancy diffusion process that follows the Nabarro-Herring (lattice diffusion) model. Diffusivities calculated from the strain rate-stress data (1.13 × 10-18 m2s-1) identify iron and rare-earth cations as the rate-determining lattice diffusants. Cross-section scanning transmission electron microscopy reveals an exfoliation gap located ∼30 nm into the film, comparable to the cation diffusion length, which appears to verify the model. With a saturation magnetization of 18 emu cc-1 and a Faraday rotation of -2900°cm-1 at 1550 nm, the magnetic and optical properties of the nanosheets are comparable to their thin-film values. Diffusion-driven exfoliation will open foundry-acceptable pathways for heterogeneous integration of garnets on photonic waveguides and protect devices from the high-temperature processes used in crystallizing garnet films.</p>

Topics
  • semiconductor
  • transmission electron microscopy
  • Silicon
  • iron
  • annealing
  • magnetization
  • saturation magnetization
  • vacancy
  • Cerium
  • Terbium