People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kelly, John
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2023Preclinical evaluation of manufacturable SARS-CoV-2 spike virus-like particles produced in Chinese Hamster Ovary cellscitations
- 2022Daptomycin susceptibility testing and therapeutic use in enterococcal bloodstream infection (EBSI) in a setting with high rates of vancomycin-resistant <i>Enterococcus faecium</i> (VREfm)citations
- 2021Radially Grown Graphene Nanoflakes for Tough and Strong Carbon Fiber Epoxy Compositescitations
- 2021Influence of Binder Float Length on the Out-of-Plane and Axial Impact Performance of 3D Woven Compositescitations
- 2020Improved crush energy absorption in 3D woven composites by pick density modificationcitations
- 2019Influence of Textile Architecture on the Mechanical Properties of 3D Woven Carbon Composites
- 2019Comparative studies of structure property relationship between glass/epoxy and carbon/epoxy 3D woven composites
- 2019Energy Absorption Mechanisms in Layer-to-Layer 3D Woven Composites
- 2019Improved Energy Absorption in 3D Woven Composites by Weave Parameter Manipulationcitations
- 2013Advances in the synthesis of ZnO materials for varistor devicescitations
Places of action
Organizations | Location | People |
---|
article
Radially Grown Graphene Nanoflakes for Tough and Strong Carbon Fiber Epoxy Composites
Abstract
A long-standing challenge in structural material design is the simultaneous attainment of high strength and toughness, a conflicting requirement rarely met in engineering materials, with important technological applications in aerospace, defense, automobile, and marine industries. Motivated from examples in biological materials, to address this challenge, we demonstrate that strong and damage-tolerant carbon-fiber-reinforced polymers (CFRPs) can be realized via the direct growth of self-assembled radially aligned graphene nanoflakes (GNFs) on carbon fibers (CFs). Here, we report a first-of-its-kind study on the dependence of strength and toughness on the surface morphology of GNFs in CFRPs. The results indicated that fracture toughness was dependent on the density and waviness of the GNFs, whereas the tensile strength was also affected by the periodicity of the coated carbon fiber layers into the laminated structures. Notably, GNFs with reduced waviness and increased number of layers exhibited enhancement in interlaminar fracture toughness for modes I and II by 93.8% and 43.3%, respectively, whereas GNFs with increased waviness led to a marginal increase or preserved tensile strength. The highly interconnected and wavy nature of GNFs facilitated effective load transfer in both in-plane and out-of-plane directions. Moreover, the out-of-plane through-volume conductivity was remarkably enhanced by 527%. The results of this work demonstrated for the first time the unique potential of GNFs, as an excellent nanoreinforcement and electrically conducting interface, for achieving simultaneously strong, tough, and conducting multifunctional CFRP composites.