People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Sel, Ozlem
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (22/22 displayed)
- 2024Current collector-free symmetric μ-supercapacitor based on a ternary composite of graphene, polydopamine and Co 3 O 4citations
- 2023Current collectors corrosion behaviours and rechargeability of TiO2 in Aqueous Electrolyte Aluminium-ion batteriescitations
- 2023Highly Ordered Graphene Polydopamine Composite Allowing Fast Motion of Cations: Toward a High‐Performance Microsupercapacitorcitations
- 2022Identifying interfacial mechanisms limitations within aqueous Zn-MnO2 batteries and means to cure them with additivescitations
- 2022Identifying interfacial mechanisms limitations within aqueous Zn-MnO2 batteries and means to cure them with additivescitations
- 2022Interface Properties of 2D Graphene–Polydopamine Composite Electrodes in Protic Ionic Liquid-Based Electrolytes Explored by Advanced Electrogravimetrycitations
- 2022Aqueous Multivalent Charge Storage Mechanism in Aromatic Diamine-Based Organic Electrodescitations
- 2021Poly( ortho -phenylenediamine) overlaid fibrous carbon networks exhibiting a synergistic effect for enhanced performance in hybrid micro energy storage devicescitations
- 2021Poly( ortho -phenylenediamine) overlaid fibrous carbon networks exhibiting a synergistic effect for enhanced performance in hybrid micro energy storage devicescitations
- 2021Single Wall Carbon Nanotubes/Polypyrrole Composite Thin Film Electrodes: Investigation of Interfacial Ion Exchange Behaviorcitations
- 2021Scrutiny of the LiCoO 2 Composite Electrode/Electrolyte Interface by Advanced Electrogravimetry and Implications for Aqueous Li-Ion Batteriescitations
- 2021Electrosynthesis of hierarchical Cu2O–Cu(OH)2 nanodendrites supported on carbon nanofibers/poly(para-phenylenediamine) nanocomposite as high-efficiency catalysts for methanol electrooxidationcitations
- 2021Preventing Graphene from Restacking via Bioinspired Chemical Inserts: Toward a Superior 2D Micro-supercapacitor Electrodecitations
- 2020Prompt microwave-assisted synthesis of carbon coated Si nanocomposites as anode for lithium-ion batteriescitations
- 2020Making advanced electrogravimetry as an affordable analytical tool for the battery interface characterizationcitations
- 2019Correlation between the interfacial ion dynamics and charge storage properties of poly(ortho-phenylenediamine) electrodes exhibiting high cycling stability.
- 2019Correlation between the interfacial ion dynamics and charge storage properties of poly(ortho-phenylenediamine) electrodes exhibiting high cycling stability.
- 2019Ion Dynamics at the Single Wall Carbon Nanotube Based Composite Electrode/Electrolyte Interface: Influence of the Cation Size and Electrolyte pHcitations
- 2018Charge storage properties of single wall carbon nanotubes/Prussian blue nanocube composites studied by multi-scale coupled electrogravimetric methodscitations
- 2017Dynamic Resolution of Ion Transfer in Electrochemically Reduced Graphene Oxides Revealed by Electrogravimetric Impedancecitations
- 2017Correlation between the proton conductivity and diffusion coefficient of sulfonic acid functionalized chitosan and Nafion composites via impedance spectroscopy measurementscitations
- 2014Influence of the Incorporation of CeO2 Nanoparticles on the Ion Exchange Behavior of Dodecylsulfate Doped Polypyrrole Films: Ac-Electrogravimetry Investigationscitations
Places of action
Organizations | Location | People |
---|
article
Preventing Graphene from Restacking via Bioinspired Chemical Inserts: Toward a Superior 2D Micro-supercapacitor Electrode
Abstract
International audience ; Graphene-based composites are promising materials for supercapacitors due to the high specific surface area and electrical conductivity of graphene. Reduction of graphene oxide (GO) is a practical approach to obtain a graphene-like material, but it suffers from restacking of the graphene sheets. Herein, a two-dimensional composite electrode based on electrochemically reduced GO (ERGO) and polydopamine (PDA) is reported, where PDA is used as a “bioinspired chemical insert” to tackle with the restacking issue of graphene layers. This green and facile electrochemical fabrication method starts from electroreduction of GO followed by electro-oxidation of dopamine (DA), present in the same electrolyte, by a simple switch between a cathodic and an anodic potential. The optimized ERGO-PDA composite electrode possesses combined features of excellent capacitive behavior, with a relaxation time (τ0) of 0.88 s, high gravimetric and volumetric capacitances (178 F·g–1 and 297 F·cm–3, respectively, at 10 mV·s–1), and finally an excellent cycling stability at 100–2000 mV·s–1 at least for 30,000 cycles. The DA electropolymerization yield monitored by a quartz crystal microbalance and X-ray diffraction measurements demonstrate that PDA is formed between the graphene sheets which prevents the sheets from restacking and facilitates species diffusion inside the composite, leading to a volumetric energy density of 8.6 mWh·cm–3 for a power density of 7.8 W·cm–3. Additionally, the electrochemical quartz crystal microbalance demonstrates a dominant cationic charge compensation and a very efficient interfacial transfer characteristic since a totally reversible mass response during charge/discharge was observed for the optimized ERGO-PDA electrode.