Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Chiesa, Matteo

  • Google
  • 10
  • 36
  • 154

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (10/10 displayed)

  • 2023Single-crystalline MoO 3 /functionalized multiwalled carbon nanotube nanocomposites for sensing phenothiazine in biological samples18citations
  • 2022Rapid Colorimetric pH-Responsive Gold Nanocomposite Hydrogels for Sensing Applications12citations
  • 2022Rapid Colorimetric pH-Responsive Gold Nanocomposite Hydrogels for Sensing Applications12citations
  • 2021Revealing the Quasi-Periodic Crystallographic Structure of Self-Assembled SnTiS3 Misfit Compound7citations
  • 2020Superposition of semiconductor and semi-metal properties of self-assembled 2D SnTiS3 heterostructures9citations
  • 2020Enhanced photoelectrochemical performance of atomic layer deposited Hf-doped ZnO29citations
  • 2020Tuning the photoluminescence of few-layer MoS2nanosheets by mechanical nanostamping for broadband optoelectronic applications12citations
  • 2019Insights into graphene wettability transparency by locally probing its surface free energy27citations
  • 2018Relating Photoelectrochemistry and Wettability of Sputtered Cu- and N-Doped TiO 2 Thin Films via an Integrated Approach28citations
  • 2012Enhanced electrical properties of vertically aligned carbon nanotube-epoxy nanocomposites with high packing densitycitations

Places of action

Chart of shared publication
Arumugam, Balamurugan
1 / 1 shared
Palanisamy, Selvakumar
1 / 3 shared
Ramaraj, Sayee Kannan
1 / 4 shared
Elsherif, Mohamed
2 / 3 shared
Butt, Haider
1 / 2 shared
Salih, Ahmed E.
1 / 2 shared
Alam, Fahad
1 / 6 shared
Salih, Ahmed
1 / 2 shared
Lu, Jin-You
3 / 3 shared
Rajput, Nitul S.
2 / 3 shared
Baik, Hionsuck
1 / 4 shared
Sankar, Raman
2 / 6 shared
Tamalampudi, Srinivasa Reddy
4 / 5 shared
Al Ghaferi, Amal
2 / 2 shared
Patole, Shashikant
1 / 3 shared
Alfakes, Boulos
2 / 2 shared
Rajput, Nitul
1 / 5 shared
Apostoleris, Harry
2 / 2 shared
Almansouri, Ibraheem
3 / 4 shared
Sá, Jacinto
1 / 9 shared
Villegas, Juan
1 / 1 shared
Lewin, Erik
1 / 30 shared
Palmisano, Giovanni
2 / 13 shared
Al-Hagri, Abdulrahman
1 / 1 shared
Garlisi, Corrado
2 / 4 shared
Lu, Jin You
1 / 1 shared
Paredes, Bruna
1 / 2 shared
Dushaq, Ghada
1 / 7 shared
Alhagri, Abdulrahman
1 / 1 shared
Olukan, Tuza
1 / 1 shared
Mahri, Mariam Ali Al
1 / 1 shared
Lai, Chia-Yun
2 / 2 shared
George, Leslie
1 / 1 shared
Stefancich, Marco
1 / 1 shared
Souier, Tewfik
1 / 1 shared
Santos, Sergio
1 / 2 shared
Chart of publication period
2023
2022
2021
2020
2019
2018
2012

Co-Authors (by relevance)

  • Arumugam, Balamurugan
  • Palanisamy, Selvakumar
  • Ramaraj, Sayee Kannan
  • Elsherif, Mohamed
  • Butt, Haider
  • Salih, Ahmed E.
  • Alam, Fahad
  • Salih, Ahmed
  • Lu, Jin-You
  • Rajput, Nitul S.
  • Baik, Hionsuck
  • Sankar, Raman
  • Tamalampudi, Srinivasa Reddy
  • Al Ghaferi, Amal
  • Patole, Shashikant
  • Alfakes, Boulos
  • Rajput, Nitul
  • Apostoleris, Harry
  • Almansouri, Ibraheem
  • Sá, Jacinto
  • Villegas, Juan
  • Lewin, Erik
  • Palmisano, Giovanni
  • Al-Hagri, Abdulrahman
  • Garlisi, Corrado
  • Lu, Jin You
  • Paredes, Bruna
  • Dushaq, Ghada
  • Alhagri, Abdulrahman
  • Olukan, Tuza
  • Mahri, Mariam Ali Al
  • Lai, Chia-Yun
  • George, Leslie
  • Stefancich, Marco
  • Souier, Tewfik
  • Santos, Sergio
OrganizationsLocationPeople

article

Tuning the photoluminescence of few-layer MoS2nanosheets by mechanical nanostamping for broadband optoelectronic applications

  • Lu, Jin You
  • Paredes, Bruna
  • Dushaq, Ghada
  • Chiesa, Matteo
Abstract

<p>Tuning the optical signature of two-dimensional (2D) materials through local strain is an exciting avenue for advanced optoelectronic device engineering. Here, we demonstrate a controllable way to locally tune the energy of photoluminescent emission of fewlayer MoS2 while enhancing their PL intensity using a mechanical nanostamping technique. In this method, regions of tensile and compressive strain are simultaneously attained through mechanically nanostamped arrays on a Si substrate. We demonstrated that the band gap and lattice constant of exfoliated MoS2 layers are locally modified in such a nonzero Gaussian curvature through photoluminescence (PL) and Raman spectroscopy characterization. Moreover, within the high strain regions, relative to the nanoindent center, an enhanced direct band gap emission of 5-7L was blue-shifted (tensile strain) and redshifted (compressive strain) in the order of 45 ± 5 and 37 ± 3 meV, respectively. Multiscale simulations help explain the mechanism of strain-induced electronic band structure modification from a macroscopic scale to atomic scale. The straightforward fabrication procedure presented here can open a pathway to strain engineer 2D semiconductors for future optoelectronic device applications. </p>

Topics
  • impedance spectroscopy
  • photoluminescence
  • simulation
  • semiconductor
  • two-dimensional
  • Raman spectroscopy
  • band structure
  • multiscale simulations