People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Trizio, Luca De
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2024Exogenous Metal Cations in the Synthesis of CsPbBr3 Nanocrystals and Their Interplay with Tertiary Aminescitations
- 2023Light Emission from Low‐Dimensional Pb‐Free Perovskite‐Related Metal Halide Nanocrystalscitations
- 2023Lead‐Free Halide Perovskite Materials and Optoelectronic Devices: Progress and Prospectivecitations
- 2022One Hundred-Nanometer-Sized CsPbBr3/m-SiO2 Composites Prepared via Molten-Salts Synthesis are Optimal Green Phosphors for LCD Display Devicescitations
- 2022Exploiting the Transformative Features of Metal Halides for the Synthesis of CsPbBr3@SiO2 Core-Shell Nanocrystalscitations
- 2020Transforming colloidal Cs4PbBr6 nanocrystals with poly(maleic anhydride-alt-1-octadecene) into stable CsPbBr3 perovskite emitters through intermediate heterostructurescitations
- 2020Developing Lattice Matched ZnMgSe Shells on InZnP Quantum Dots for Phosphor Applicationscitations
- 2020Cs3Cu4In2Cl13 Nanocrystalscitations
- 2019Stable Ligand Coordination at the Surface of Colloidal CsPbBr3 Nanocrystalscitations
- 2018Colloidal Synthesis of Double Perovskite Cs2AgInCl6 and Mn-Doped Cs2AgInCl6 Nanocrystalscitations
- 2018Ab initio structure determination of Cu2- xTe plasmonic nanocrystals by precession-assisted electron diffraction tomography and HAADF-STEM imagingcitations
Places of action
Organizations | Location | People |
---|
article
Developing Lattice Matched ZnMgSe Shells on InZnP Quantum Dots for Phosphor Applications
Abstract
<p>Indium phosphide quantum dots (QDs) have drawn attention as alternatives to cadmium- and lead-based QDs that are currently used as phosphors in lamps and displays. The main drawbacks of InP QDs are, in general, a lower photoluminescence quantum yield (PLQY), a decreased color purity, and poor chemical stability. In this research, we attempted to increase the PLQY and stability of indium phosphide QDs by developing lattice matched InP/MgSe core-shell nanoheterostructures. The choice of MgSe comes from the fact that, in theory, it has a near-perfect lattice match with InP, provided MgSe is grown in the zinc blende crystal structure, which can be achieved by alloying with zinc. To retain lattice matching, we used Zn in both the core and shell and we fabricated InZnP/Zn<sub>x</sub>Mg<sub>1-x</sub>Se core/shell QDs. To identify the most suitable conditions for the shell growth, we first developed a synthesis route to Zn<sub>x</sub>Mg<sub>1-x</sub>Se nanocrystals (NCs) wherein Mg is effectively incorporated. Our optimized procedure was employed for the successful growth of Zn<sub>x</sub>Mg<sub>1-x</sub>Se shells around In(Zn)P QDs. The corresponding core/shell systems exhibit PLQYs higher than those of the starting In(Zn)P QDs and, more importantly, a higher color purity upon increasing the Mg content. The results are discussed in the context of a reduced density of interface states upon using better lattice matched Zn<sub>x</sub>Mg<sub>1-x</sub>Se shells.</p>